数字信号处理:原理、算法与应用

数字信号处理:原理、算法与应用
作 者: John Proakis Dimitris Manolakis
出版社: 中国电力出版社
丛编项: 国外经典计算机科学教材
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 通信技术理论与基础
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  JohnG.Proakis长期担任美国东北大学的电气工程教授,并担任该校电气与计算机工程系主任之职达14年之久。他分别从麻省理工学院和哈佛大学获得了硕士和博士学位。Proakis教授是众多成功教材的作者,其教材在世界上具有相当的影响力。

内容简介

为了给读者在理论和实践应用之间进行合理的平衡,本书严谨地介绍了现代数字信号处理的基本概念和技术,并介绍了相关的算法和应用。本书涵盖了线性离散时间系统分析的时域和频域方法,还涉及了诸如采样、数字滤波器设计、滤波器实现、去卷积、插值、状态矢量空间方法、频谱分析等相关主题的内容。本书不仅要求对诸多示例、练习的理解,而且更强调对数字信号算法进行软件实现的实践环节。本书特点:·覆盖离散傅立叶变换(DFT)和快速傅立叶变换(FFT)算法,并对其进行了更加合理清晰的重组——介绍DFT,并在阐明傅立叶分析后描述其快速计算·描述模拟信号模数转换中涉及的运算和技术·在时域研究线性时不变离散时间系统和离散时间信号的特性·考虑双边z变换和单边z变换,并描述了求z反变换的方法·在频域分析信号与系统,给出连续时间信号与离散时间信号的傅立叶级数与傅立叶变换·实现无限冲激响应(IIR)与有限冲激响应(FIR)系统的结构形式,包括直接型、级联型、并联型、格型和格梯型·采样频率转换基础与多采样率转换系统·功率谱估计的详细测试,并讨论了非参数方法、基于模型的方法和基于特征分解的方法,包括MUSIC算法和ESPRIT算法·全书囊括了许多实例,并提供大约500个可解决的问题本书既适合作为本科生学习离散系统和数字信号处理课程的教材,又适合研究生一年级学习数字信号处理课程时作为教材使用。

图书目录

IINTRODUCTION

1.1Signals,Systems,andSignalProcessing2

1.1.1BasicElementsofaDigitalSignalProcessingSystem,4

1.1.2AdvantagesofDigitaloverAnalogSignalProcessing,5

1.2ClassificationofSignals6

1.2.1MultichannelandMultidimensionalSignals,7

1.2.2Continuous-TimeVersusDiscrete-TimeSignals,8

1.2.3Continuous-ValuedVersusDiscrete-ValuedSignals,10

1.2.4DeterministicVersusRandomSignals,11

1.3TheConceptofFrequencyinContinuous-Timeand

Discrete-TimeSignals14

1.3.1Continuous-TimeSinusoidalSignals,14

1.3.2Discrete-TimeSinusoidalSignals,16

1.3.3HarmonicallyRelatedComplexExponentials,19

1.4Analog-to-DigitalandDigital-to-AnalogConversion21

1.4.1SamplingofAnalogSignals,23

1.4.2TheSamplingTheorem,29

1.4.3QuantizationofContinuous-AmplitudeSignals,33

1.4.4QuantizationofSinusoidalSignals,36

1.4.5CodingofQuantizedSamples,38

1.4.6Digital-to-AnalogConversion,38

1.4.7AnalysisofDigitalSignalsandSystemsVersusDiscrete-Time

SignalsandSystems,39

1.5SummaryandReferences39

Problems40

2DISCRETE-TIMESIGNALSANDSYSTEMS

2.1Discrete-TimeSignals43

2.1.1SomeElementaryDiscrete-TimeSignals,45

2.1.2ClassificationofDiscrete-TimeSignals,47

2.1.3SimpleManipulationsofDiscrete-TimeSignals,52

2.2Discrete-TimeSystems56

2.2.1Input-OutputDescriptionofSystems,56

2.2.2BlockDiagramRepresentationofDiscrete-TimeSystems,59

2.2.3ClassificationofDiscrete-TimeSystems,62

2.2.4InterconnectionofDiscrete-TimeSystems,70

2.3AnalysisofDiscrete-TimeLinearTime-InvariantSystems72

2.3.1TechniquesfortheAnalysisofLinearSystems,72

2.3.2ResolutionofaDiscrete-TimeSignalintoImpulses,74

2.3.3ResponseofLTISystemstoArbitraryInputs:TheConvolution

Sum.75

2.3.4PropertiesofConvolutionandtheInterconnectionofLTl

Systems,82

2.3.5CausalLinearTime-InvariantSystems,86

2.3.6StabilityofLinearTime-InvariantSystems,87

2.3.7SystemswithFinite-DurationandInfinite-DurationImpulse

Response.90

2.4Discrete-TimeSystemsDescribedbyDifferenceEquations91

2.4.1RecursiveandNonrecursiveDiscrete-TimeSystems.92

2.4.2LinearTime-InvariantSystemsCharacterizedby

Constant-CoefficientDifferenceEquations,95

2.4.3SolutionofLinearConstant-CoefficientDifferenceEquations.100

2.4.4TheImpulseResponseofaLinearTime-InvariantRecursive

System.108

2.5ImplementationofDiscrete-TimeSystems111

2.5.1StructuresfortheRealizationofLinearTime-Invariant

Systems.111

2.5.2RecursiveandNonrecumveRealizationsofFIRSystems.116

2.6CorrelationofDiscrete-TimeSignals118

2.6.1CrosscorrelationandAutocorrelationSequences,120

2.6.2PropertiesoftheAutocorrelationandCrosscorrelation

Sequences.122

2.6.3CorrelationofPeriodicSequences,124

2.6.4ComputationofCorrelationSequences,130

2.6.5Input-OutputCorrelationSequences,131

2.7SummaryandReferences134

Problems135

3THEZ-TRANSFORMANDITSAPPLICATIONTOTHEANALYSIS

OFLTlSYSTEMS151

3.1Thez-Transform151

3.1.1TheDirectz-Transform.152

3.1.2TheInversez-Transform,160

3.2Propertiesofthez-Transform161

3.3Rationalz-Transforms172

3.3.1PolesandZeros.172

3.3.2PoleLocationandTime-DomainBehaviorforCausalSignals.178

3.3.3TheSystemFunctionofaLinearTime-InvariantSystem,181

3.4Inversionofthez-Transform184

3.4.1TheInversez-TransformbyContourIntegration,184

3.4.2TheInversez-TransformbyPowerSeriesExpansion.186

3.4.3TheInversez-TransformbyPartial-FractionExpansion,[88

3.4.4DecompositionofRationalz-Transforms.195

3.5TheOne-sidedz-Transform197

3.5.1DefinitionandProperties,197

3.5.2SolutionofDifferenceEquations,201

3.6AnalysisofLinearTime-InvariantSystemsinthez-Domain203

3.6.1ResponseofSystemswithRationalSystemFunctions.203

3.6.2ResponseofPole-ZeroSystemswithNonzeroInitial

Conditions.204

3.6.3TransientandSteady-StateResponses.206

3.6.4CausalityandStability.208

3.6.5Pole-ZeroCancellations,210

3.6.6Multiple-OrderPolesandStability,211

3.6.7TheSchur-CohnStabilityTest,213

3.6.8StabilityofSecond-OrderSystems,215

3.7SummaryandReferences219

Problems220

4FREQUENCYANALYSISOFSIGNALSANDSYSTEMS230

4.1FrequencyAnalysisofContinuous-TimeSignals230

4.1.1TheFourierSeriesforContinuous-TimePeriodicSignals.232

4.1.2PowerDensitySpectrumofPeriodicSignals,235

4.1.3TheFourierTransformforContinuous-TimeAperiodic

Signals,240

4.1.4EnergyDensitySpectrumofAperiodicSignals.243

4.2FrequencyAnalysisofDiscrete-TimeSignals247

4.2.1TheFourierSeriesforDiscrete-TimePeriodicSignals,247

4.2.2PowerDensitySpectrumofPeriodicSignals,250

4.2.3TheFourierTransformofDiscrete-TimeAperiodicSignals,253

4.2.4ConvergenceofttxeFourierTransform,256

4.2.5EnergyDensitySpectrumofAperiodicSignals,260

4.2.6RelationshipoftheFourierTransformtothez-Transform,264

4.2.7TheCepstrum,265

4.2.8TheFourierTransformofSignalswithPolesontheUnit

Circle,267

4.2.9TheSamplingTheoremRevisited,269

4.2.10Frequency-DomainClassificationofSignals:TheConceptof

Bandwidth,279

4.2.11TheFrequencyRangesofSomeNaturalSignals,282

4.2.12PhysicalandMathematicalDualities,282

4.3PropertiesoftheFourierTransformforDiscrete-Time

Signals286

4.3.1SymmetryPropertiesoftheFourierTransform,287

4.3.2FourierTransformTheoremsandProperties,294

4.4Frequency-DomainCharacteristicsofLinearTime-Invariant

Systems305

4.4.1ResponsetoComplexExponentialandSinnsoidalSignals:The

FrequencyResponseFunction,306

4.4.2Steady-StateandTransientResponsetoSinusoidalInput

Signals,314

4.4.3Steady-StateResponsetoPeriodicInputSignals,315

4.4.4ResponsetoAperiodicInputSignals,316

4.4.5RelationshipsBetweentheSystemFunctionandtheFrequency

ResponseFunction,319

4.4.6ComputationoftheFrequencyResponseFunction,321

4.4.7Input-OutputCorrelationFunctionsandSpectra,325

4.4.8CorrelationFunctionsandPowerSpectraforRandomInput

Signals,327

4.5LinearTime-InvariantSystemsasFrequency-Selective

Filters330

4.5.1IdealFilterCharacteristics,331

4.5.2Lowpass,Highpass,andBandpassFilters,333

4.5.3DigitalResonators,340

4.5.4NotchFilters,343

4.5.5CombFilters,345

4.5.6All-PassFilters,350

4.5.7DigitalSinusoidalOscillators,352

4.6InverseSystemsandDeconvolution355

4.6.1InvertibilityofLinearTime-InvariantSystems,356

4.6.2Minimum-Phase,Maximum-Phase,andMixed-PhaseSystems,359

4.6.3SystemIdentificationandDeconvolution,363

4.6.4HomomorphicDeconvolution,365

SummaryandReferences367

Problems368

5THEDISCRETEFOURIERTRANSFORM:ITSPROPERTIESAND

APPLICATIONS394

5.1FrequencyDomainSampling:TheDiscreteFourier

Transform394

5.1.1Frequency-DomainSamplingandReconstructionof

Discrete-TimeSignals,394

5.1.2TheDiscreteFourierTransform(DFT),399

5.1.3TheDFTasaLinearTransformation,403

5.1.4RelationshipoftheDFTtoOtherTransforms,407

5.2PropertiesoftheDFT409

5.2.1Periodicity,Linearity,andSymmetryProperties,410

5.2.2MultiplicationofTwoDFTsandCircularConvolution,415

5.2.3AdditionalDFTProperties,421

5.3LinearFilteringMethodsBasedontheDFT425

5.3.1UseoftheDFTinLinearFiltering,426

5.3.2FilteringofLongDataSequences,430

5.4FrequencyAnalysisofSignalsUsingtheDFT433

5.5SummaryandReferences440

Problems440

6EFFICIENTCOMPUTATIONOFTHEOFT:FASTFOURIER

TRANSFORMALGORITHMS448

6.1EfficientComputationoftheDFT:FFTAlgorithms448

6.1.1DirectComputationoftheDFT,449

6.1.2Divide-and-ConquerApproachtoComputationoftheDFT,450

6.1.3Radix-2FFTAlgorithms,456

6.1.4Radix-4FFTAlgorithms,465

6.1.5Split-RadixFFTAlgorithms,470

6.1.6ImplementationofFFTAlgorithms,473

6.2ApplicationsofFFTAlgorithms475

6.2.1EfficientComputationoftheDFTofTwoRealSequences,475

6.2.2EfficientComputationoftheDFTofa2N-PointReal

Sequence,476

6.2.3UseoftheFFTAlgorithminLinearFilteringandCorrelation,477

6.3ALinearFilteringApproachtoComputationoftheDFT479

6.3.1TheGoertzelAlgorithm,480

6.3.2TheChirp-zTransformAlgorithm,482

QuantizationEffectsintheComputationof'theDFT486

6.4.1QuantizationErrorsintheDirectComputationoftheDFT,487

6.4.2QuantizationErrorsinFFTAlgorithms,489

6.5SummaryandReferences493

Problems494

7IMPLEMENTATIONOFDISCRETE-TIMESYSTEMS500

7.1StructuresfortheRealizationofDiscrete-TimeSystems500

7.2StructuresforFIRSystems502

7.2.1Direct-FormStructure,503

7.2.2Cascade-FormStructures,504

7.2.3Frequency-SamplingStructures*,506

7.2.4LatticeStructure,511

7.3StructuresforIIRSystems519

7.3.1Direct-FormStructures,519

7.3.2SignalFlowGraphsandTransposedStructures,521

7.3.3Cascade-FormStructures,526

7.3.4Parallel-FormStructures,529

7.3.5LatticeandLattice-LadderStructuresforIIRSystems,531

7.4State-SpaceSystemAnalysisandStructures539

7.4.1State-SpaceDescriptionsofSystemsCharacterizedbyDifference

Equations,540

7.4.2SolutionoftheState-SpaceEquations,543

7.4.3RelationshipsBetweenInput-OutputandState-Space

Descriptions,545

7.4.4State-SpaceAnalysisinthez-Domain,550

7.4.5AdditionalState-SpaceStructures,554

7.5RepresentationofNumbers556

7.5.1Fixed-PointRepresentatknvofNumbers,557

7.5.2BinaryFloating-PointRepresentationofNumbers,561

7.5.3ErrorsResultingfromRoundingandTruncation,564

7.6QuantizationofFilterCoefficients569

7.6.1AnalysisofSensitivitytoQuantizationofFilterCoefficients,569

7.6.2QuantizationofCoefficientsinFIRFilters,578

7.7Round-OffEffectsinDigitalFilters582

7.7.1Limit-CycleOscillationsinRecursiveSystems,583

7.7.2ScalingtoPreventOverflow,588

7.7.3StatisticalCharacterizationofQuantizationEffectsinFixed-Point

RealizationsofDigitalFilters,590

7.8SummaryandReferences598

Problems600

8DESIGNOFDIGITALFILTERS614

8.1GeneralConsiderations614

8.1.1CausalityandItsImplications,615

8.1.2CharacteristicsofPracticalFrequency-SelectiveFilters,619

8.2DesignofFIRFilters620

8.2.1SymmetricandAntisymmetricFIRFilters,620

8.2.2DesignofLinear-PhaseFIRFiltersUsingWindows,623

8.2.3DesignofLinear-PhaseFIRFiltersbytheFrequency-Sampling

Method,630

8.2.4DesignofOptimumEquirippleLinear-PhaseFIRFilters,637

8.2.5DesignofFIRDifferentiators,652

8.2.6DesignofHilbertTransformers,657

8.2.7ComparisonofDesignMethodsforLinear-PhaseFIRFilters,662

8.3DesignofIIRFiltersFromAnalogFilters666

8.3.1IIRFilterDesignbyApproximationofDerivatives,667

8.3.2IIRFilterDesignbyImpulseInvariance.671

8.3.3IIRFilterDesignbytheBilinearTransformation,676

8.3.4TheMatched-zTransformation,681

8.3.5CharacteristicsofCommonlyUsedAnalogFilters,681

8.3.6SomeExamplesofDigitalFilterDesignsBasedontheBilinear

Transformation,692

8.4FrequencyTransformations692

8.4:1FrequencyTransformationsintheAnalogDomain,693

8.4.2FrequencyTransformationsintheDigitalDomain,698

8.5DesignofDigitalFiltersBasedonLeast-SquaresMethod701

8.5.1Pad~ApproximationMethod,701

8.5.2Least-SquaresDesignMethods,706

8.5.3FIRLeast-SquaresInverse(Wiener)Filters,711

8.5.4DesignofIIRFiltersintheFrequencyDomain,719

8.6SummaryandReferences724

Problems726

9SAMPLINGANDRECONSTRUCTIONOFSIGNALS738

9.1SamplingofBandpassSignals738

9.1.1RepresentationofBandpassSignals,738

9.1.2SamplingofBandpassSignals.742

9.1.3Discrete-TimeProcessingofContinuous-TimeSignals.746

9.2Analog-to-DigitalConverSion748

9.2.1Sample-and-Hold,748

9.2.2QuantizationandCoding,750

9.2.3AnalysisofQuantizationErrors.753

9.2.4OversamplingA/DConverters,756

DESIGNOFDIGITALFILTERS614

8.1GeneralConsiderations614

8.1.1CausalityandItsImplications,615

8.1.2CharacteristicsofPracticalFrequency-SelectiveFilters,619

8.2DesignofFIRFilters620

8.2.1SymmetricandAntisymmetricFIRFilters,620

8.2.2DesignofLinear-PhaseFIRFiltersUsingWindows,623

8.2.3DesignofLinear-PhaseFIRFiltersbytheFrequency-Sampling

Method,630

8.2.4DesignofOptimumEquirippleLinear-PhaseFIRFilters,637

8.2.5DesignofFIRDifferentiators,652

8.2.6DesignofHilbertTransformers,657

8.2.7ComparisonofDesignMethodsforLinear-PhaseFIRFilters,662

8.3DesignofIIRFiltersFromAnalogFilters666

8.3.1IIRFilterDesignbyApproximationofDerivatives,667

8.3.2IIRFilterDesignbyImpulseInvariance,671

8.3.3IIRFilterDesignbytheBilinearTransformation,676

8.3.4TheMatched-zTransformation,681

8.3.5CharacteristicsofCommonlyUsedAnalogFilters,681

8.3.6SomeExamplesofDigitalFilterDesignsBasedontheBilinear

Transformation,692

8.4FrequencyTransformations692

8.4.1FrequencyTransformationsintheAnalogDomain,693

8.4.2FrequencyTransformationsintheDigitalDomain,698

8.5DesignofDigitalFiltersBasedonLeast-SquaresMethod701

8.5.1Pad6ApproximationMethod,701

8.5.2Least-SquaresDesignMethods,706

8.5.3FIRLeast-SquaresInverse(Wiener)Filters.711

8.5.4DesignofIIRFiltersintheFrequencyDomain,719

8.6SummaryandReferences724

Problems726

9SAMPLINGANDRECONSTRUCTIONOFSIGNALS738

9.1SamplingofBandpassSignals738

9.1.1RepresentationofBandpassSignals,738

9.1.2SamplingofBandpassSignals,742

9.1.3Discrete-TimeProcessingofContinuous-TimeSignals.746

9.2Analog-to-DigitalConversion748

9.2.1Sample-and-Hold,748

9.2.2QuantizationandCoding,750

9.2.3AnalysisofQuantizationErrors,753

9.2.4OversamplingA/DConverters,756

9.3Digital-to-AnalogConversion763

9.3.1SampleandHold,765

9.3.2First-OrderHold,768

9.3.3LinearInterpolationwithDelay,771

9.3.4OversamplingD/AConverters,774

9.4SummaryandReferences774

Problems775

10MULTIRATEDIGITALSIGNALPROCESSING782

10.1Introduction783

10.2DecimationbyaFactorD784

10.3InterpolationbyaFactor!787

10.4SamplingRateConversionbyaRationalFactorI/D790

10.5FilterDesignandImplementationforSampling-Rate

Conversion792

10.5.1Direct-FormFIRFilterStructures,793

10.5.2PolyphaseFilterStructures.794

10.5.3Time-VariantFilterStructures.800

10.6MultistageImplementationofSampling-RateConversion806

10.7Sampling-RateConversionofBandpassSignals810

10.7.1DecimationandInterpolationbyFrequencyConversion.812

10.7.2Modulation-FreeMethodforDecimationandInterpolation,814

10.8Sampling-RateConversionbyanArbitraryFactor815

10.8.1First-OrderApproximation.816

10.8.2Second-OrderApproximation(LinearInterpolation),819

10.9ApplicationsofMultirateSignalProcessing821

10.9.1DesignofPhaseShifters.821

10.9.2InterfacingofDigitalSystemswithDifferentSamplingRates,823

10.9.3ImplementationofNarrowbandLowpassFilters,824

10.9.4ImplementationofDigitalFilterBanks,825

10.9.5SubbandCodingofSpeechSignals,831

10.9.6QuadratureMirrorFilters,833

10.9.7Transmultiplexers,841

10.9.80versamplingA/DandD/AConversion,843

10.10SummaryandReferences844

Problems846

11LINEARPREDICTIONANDOPTIMUMLINEARFILTERS852

11.1InnovationsRepresentationofaStationaryRandom

Process852

11.1.1RationalPowerSpectra,854

11.1.2RelationshipsBetweentheFilterParametersandthe

AutocorrelationSequence,855

11.2ForwardandBackwardLinearPrediction857

11.2.1ForwardLinearPrediction,857

11.2.2BackwardLinearPrediction,860

11.2.3TheOptimumReflectionCoefficientsfortheLatticeForwardand

BackwardPredictors,863

11.2.4RelationshipofanARProcesstoLinearPrediction,864

11.3SolutionoftheNormalEquations864

11.3.1TheLevinson-DurbinAlgorithm,865

11.3.2TheSchiirAlgorithm,868

11.4PropertiesoftheLinearPrediction-ErrorFilters873

11.5ARLatticeandARMALattice-LadderFilters876

11.5.1ARLatticeStructure,877

11.5.2ARMAProcessesandLattice-LadderFilters,878

11.6WienerFiltersforFilteringandPrediction880

11.6.1FIRWienerFilter,881

11.6.20rthogonalityPrincipleinLinearMean-SquareEstimation,884

11.6.3IIRWienerFilter,885

11.6.4NoncausalWienerFilter,889

11.7SummaryandReferences890

Problems892

12POWERSPECTRUMESTIMATION898

12.1EstimationofSpectrafromFinite-DurationObservationsof

Signals896

12.1.1ComputationoftheEnergyDensitySpectrum,897

12.1.2EstimationoftheAutocorrelationandPowerSpectrumof

RandomSignals:ThePeriodogram,902

12.1.3TheUseoftheDFTinPowerSpectrumEstimation,906

12.2NonparametricMethodsforPowerSpectrumEstimation908

12.2.1TheBartlettMethod:AveragingPeriodograms,910

12.2.2TheWelchMethod:AveragingModifiedPeriodograms,911

12.2.3TheBlackmanandTukeyMethod:Smoothingthe

Periodogram,913

12.2.4PerformanceCharacteristicsofNonparametricPowerSpectrum

Estimators,916

12.2.5ComputationalRequirementsofNonparametricPowerSpectrum

Estimates,919

12.3ParametricMethodsforPowerSpectrumEstimation920

12.3.1RelationshipsBetweentheAutocorrelationandtheModel

Parameters,923

12.3.2TheYule-WalkerMethodfortheARModelParameters,925

12.3.3TheBurgMethodfortheARModelParameters,925

12.3.4UnconstrainedLeast-SquaresMethodfortheARModel

Parameters,929

12.3.5SequentialEstimationMethodsfortheARModelParameters,930

12.3.6SelectionofARModelOrder,931

12.3.7MAModelforPowerSpectrumEstimation,933

12.3.8ARMAModelforPowerSpectrumEstimation,934

12.3.9SomeExperimentalResults,936

12.4MinimumVarianceSpeCtralEstimation942

12.5EigenanalysisAlgorithmsforSpectrumEstimation946

12.5.1PisarenkoHarmonicDecompositionMethod,948

12.5.2Eigen-decompositionoftheAutocorrelationMatrixforSinusoids

inWhiteNoise,950

12.5.3MUSICAlgorithm,952

12.5.4ESPRITAlgorithm,953

12.5.5OrderSelectionCriteria,955

12.5.6ExperimentalResults,956

12.6SummaryandReferences959

Problems960

ARANDOMSIGNALS,CORRELATIONFUNCTIONS,ANDPOWER

SPECTRAA1

BRANDOMNUMBERGENERATORSB1

CTABLESOFTRANSITIONCOEFFICIENTSFORTHEDESIGNOF

LINEAR-PHASEFIRFILTERSCl

DLISTOFMATLABFUNCTIONSD1

REFERENCESANDBIBLIOGRAPHYR1

INDEX11