模式识别(英文版·第3版)

模式识别(英文版·第3版)
作 者: 西奥多里迪斯
出版社: 机械工业出版社
丛编项: 经典原版书库
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 模式识别
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  本书提供作译者介绍Sergios Theodoridis是希腊雅典大学信息与通信系教授。他于1973年在雅典大学获得物理学学士学位,又分别于1975年和1978年在英国伯明翰大学获得信号处理与通信硕士和博士学位。他的主要研究方向是自适应信号处理、通信与模式识别。他是欧洲并行结构及语言协会 (PARLE-95) 的主席和欧洲信号处理协会 (EUSIPCO-98) 的常务主席、《信号处理》杂志编委。Konstantinos Koutroumbas拥有雅典大学博士学位,任职于希腊雅典国家天文台空间应用与遥感研究院,是国际知名的专家。

内容简介

本书综合考虑了有监督和无监督模式识别的经典的以及当前的理论和实践,为专业技术人员和高校学生建立起了完整的基本知识体系。本书由模式识别领域内的两位顶级专家合著,从工程角度全面阐述了模式识别的应用,内容包括贝叶斯分类、贝叶斯网络、线性和非线性分类器 (包含神经网络和支持向量机) 、动态编程和用于顺序数据的隐马尔科夫模型、特征生成 (包含小波、主成分分析、独立成分分析和分形分析) 、特征选择技术、来自学习理论的基本概念、聚类概念和算法等。本书是享誉世界的名著,内容既全面又相对独立,既有基础知识的介绍,又有本领域研究现状的介绍,还有对未来发展的展望,是本领域最全面的参考书,被世界众多高校选用为教材。本书可作为高等院校计算机、电子、通信、自动化等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。● 提供了最新的关于支持向量机的研究成果 (包括V-SVM及其几何解释)。● 讨论了多分类器组合方法 (包括Boosting方法)。● 增加了最新的资料。介绍了一些聚类算法,这些算法根据Web挖掘和生物信息等应用的要求而修改,以适合大数据集和高维数据。● 涵盖了不同的应用,例如图像分析、光学字符识别、信道均衡、语音识别和音频分类等。● 面向服务的软件工程,解释了如何将可复用的Web服务用于开发新的应用。● 面向方面的软件开发,描述了基于关注点分离的新技术。

图书目录

preface

chapter 1 introduction

1.1 is pattern recognition important?

1.2 features, feature vectors, and classifiers

1.3 supervised versus unsupervised pattern

recognition

1.4 outline of the book

chapter classifiers based on bayes decision theory

2.1 introduction

2.2 bayes decision theory

2.3 discriminant functions and decision surfaces

2.4 bayesian classification for normal distributions

2.5 estimation of unknown probability density

functions

2.5.1 maximum likelihood parameter estimation

2.5.2 maximum a posteriori probability

estimation

2.5.3 bayesian inference

2.5.4 maximum entropy estimation

2.5.5 mixture models

2.5.6 nonparametric estimation

2.6 the nearest neighbor rule

chapter 3 linear classifiers

3.1 introduction

3.2 linear discriminant functions and decision

hyperplanes

3.3 the perceptron algorithm

3.4 least squares methods

3.4.1 mean square error estimation

3.4.2 stochastic approximation and the lms

algorithm

3.4.3 sum of error squares estimation

3.5 mean square estimation revisited

3.5.1 mean square error regression

3.5.2 mse estimates posterior class probabilities

3.5.3 the bias-variance dilemma

3.6 support vector machines

3.6.1 separable classes

3.6.2 nonseparable classes

chapter 4 nonlinear classifiers

4.1 introduction

4.2 the xor problem

4.3 the two-layer perceptron

4.3.1 classification capabilities of the two-layer

perceptron

4.4 three-layer perceptrons

4.5 algorithms based on exact classification of the

training set

4.6 the backpropagation algorithm

4.7 variations on the; backpropagation theme

4.8 the cost function choice

4.9 choice of the network size

4.10 a simulation example

4.11 networks with weight sharing

4.12 generalized linear classifiers

4.13 capacity of the/-dimensional space in linear

dichotomies

4.14 polynomial classifiers

4.15 radial basis function networks

4.16 universal approximators

4.17 support vector machines: the nonlinear case

4.18 decision trees

4.18.1 set of questions

4.18.2 splitting criterion

4.18.3 stop-splitting rule

4.18.4 class assignment rule

4.19 discussion

chapter 5 feature selection

5.1 introduction

5.2 preprocessing

5.2.1 outlier removal

5.2.2 data normalization

5.2.3 missing data

5.3 feature selection based on statistical hypothesis

testing

5.3.1 hypothesis testing basics

5.3.2 application of the t-test in feature

selection

5.4 the receiver operating characteristics croc curve

5.5 class separability measures

5.5.1 divergence

5.5.2 chernoff bound and

bhattacharyya distance

5.5.3 scatter matrices

5.6 feature subset selection

5.6.1 scalar feature selection

5.6.2 feature vector selection

5.7 optimal feature generation

5.8 neural networks and feature generation/selection

5.9 a hint on the vapnik--chemovenkis learning

theory

chapter 6 feature generation i: linear transforms

6.1 introduction

6.2 basis vectors and images

6.3 the karhunen-loeve transform

6.4 the singular value decomposition

6.5 independent component analysis

6.5.1 ica based on second- and fourth-order

cumulants

6.5.2 ica based on mutual information

6.5.3 an ica simulation example

6.6 the discrete fourier transform (dft)

6.6.1 one-dimensional dft

6.6.2 two-dimensional dft

6.7 the discrete cosine and sine transforms

6.8 the hadamard transform

6.9 the haar transform

6.10 the haar expansion revisited

6.11 discrete time wavelet transform (dtwt)

6.12 the multiresolution interpretation

6.13 wavelet packets

6.14 a look at two-dimensional generalizations

6.15 applications

chapter 7 feature generation ii

7.1 introduction

7.2 regional features

7.2.1 features for texture characterization

7.2.2 local linear transforms for texture

feature extraction

7.2.3 moments

7.2.4 parametric models

7.3 features for shape and size characterization

7.3.1 fourier features

7.3.2 chain codes

7.3.3 moment-based features

7.3.4 geometric features

7.4 a glimpse at fractals

7.4.1 self-similarity and fractal dimension

7.4.2 fractional brownian motion

chapter 8 template matching

8.1 introduction

8.2 measures based on optimal path searching

techniques

8.2.1 bellman's optimality principle and

dynamic programming

8.2.2 the edit distance

8.2.3 dynamic time warping in speech

recognition

8.3 measures based on correlations

8.4 deformable template models

chapter 9 context-dependent classification

9.1 introduction

9.2 the bayes classifier

9.3 markov chain models

9.4 the viterbi algorithm

9.5 channel equalization

9.6 hidden markov models

9.7 training markov models via neural networks

9.8 a discussion of markov random fields

chaptsr 10 system evaluation

10.1 introduction

10.2 error counting approach

10.3 exploiting the finite size of the data set

10.4 a case study from medical imaging

chapter 11 clustering: basic concepts

11.1 introduction

11.1.1 applications of cluster analysis

11.1.2 types of features

11.1.3 definitions of clustering

11.2 proximity measures

11.2.1 definitions

11.2.2 proximity measures between two points

11.2.3 proximity functions between a point and

a set

11.2.4 proximity functions between two sets

chapter 12 clustering algorithms i: sequential

algorithms

12.1 introduction

12.1.1 number of possible clusterings

12.2 categories of clustering algorithms

12.3 sequential clustering algorithms

12.3.1 estimation of the number of clusters

12.4 a modification of bsas

12.5 a two-threshold sequential scheme

12.6 refinement stages

12.7 neural network implementation

12.7.1 description of the architecture

12.7.2 implementation of the bsas algorithm

chapter 13 clustering algorithms ii: hierarchical

algorithms

13.1 introduction

13.2 agglomerative algorithms

13.2.1 definition of some useful quantities

13.2.2 agglomerative algorithms based on

matrix thetry

13.2.3 monotonicity and crossover

13.2.4 implementational issues

13.2.5 agglomerative algorithms based on

graph theory

13.2.6 ties in the proximity matrix

13.3 the cophenetic matrix

13.4 divisive algorithms

13.5 choice of the best number of clusters

chapter 14 clustering algorithms iii:

schemes based on function optimization

14.1 introduction

14.2 mixture decomposition schemes

14.2.1 compact and hyperellipsoidal clusters

14.2.2 a geometrical interpretation

14.3 fuzzy clustering algorithms

14.3.1 point representatives

14.3.2 quadric surfacesas representatives

14.3.3 hyperplane representatives

14.3.4 combining quadric and hyperplane

representatives

14.3.5 a geometrical interpretation

14.3.6 convergence aspects of the fuzzy

clustering algorithms

14.3.7 alternating cluster estimation

14.4 possibilistic clustering

14.4.1 the mode-seeking property

14.4.2 an alternative possibilistic scheme

14.5 hard clustering algorithms

14.5.1 the isodata or k-means or c-means

algorithm

14.6 vector quantization

chapter 15 clustering algorithms iv

15.1 introduction

15.2 clustering algorithms based on graph theory

15.2.1 minimum spanning tree algorithms

15.2.2 algorithms based on regions of influence

15.2.3 algorithms based on directed trees

15.3 competitive learning algorithms

15.3.1 basic competitive learning algorithm

15.3.2 leaky learning algorithm

15.3.3 conscientious competitive learning

algorithms

15.3.4 competitive learning-like algorithms

associated with cost functions

15.3.5 self-organizing maps

15.3.6 supervised learning vector quantization

15.4 branch and bound clustering algorithms

15.5 binary morphology clustering algorithms (bmcas)

15.5.1 discretization

15.5.2 morphological operations

15.5.3 determination of the clusters in a discrete

binary set

15.5.4 assignment of feature vectors to clusters

15.5.5 the algorithmic scheme

15.6 boundary detection algorithms

15.7 valley-seeking clustering algorithms

15.8 clustering via cost optimization (revisited)

15.8.1 simulated annealing

15.8.2 deterministic annealing

15.9 clustering using genetic algorithms

15.10 other clustering algorithms

chapter 16 cluster validity

16.1 introduction

16.2 hypothesis testing revisited

16.3 hypothesis testing in cluster validity

16.3.1 external criteria

16.3.2 internal criteria

16.4 relative criteria

16.4.1 hard clustering

16.4.2 fuzzy clustering

16.5 validity of individual clusters

16.5.1 external criteria

16.5.2 internal criteria

16.6 clustering tendency

16.6.1 tests for spatial randomness

appendix a

hints from probability and statistics

appendix b

linear algebra basics

appendix c

cost function optimization

appendix d

basic definitions from linear systems theory

index