群体智能(英文版)

群体智能(英文版)
作 者: 肯尼迪 埃伯哈特 史玉回
出版社: 人民邮电出版社
丛编项: 图灵原版计算科学系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 人工智能
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  James Kennedy,社会心理学家。自1994年起,他一直致力于粒子群算法的研究工作,并与Russell C.Eberhart共同开发了粒子群优化算法。目前在美国劳工部从事调查方法的研究工作。他在计算机科学和社会科学杂志和学报上发表过许多关于粒子群的论文。RusselI C.Eberhart 普度大学电子与计算机工程系主任。IEEE会士。与JamesKennedy共同提出了粒子群优化算法。曾任IEEE神经网络委员会的主席。除了本书之外,他还著有《计算智能:从概念到实现》(影印版由人民邮电出版社出版)等。Yuhui Shi (史玉回)国际计算智能领域专家,现任Joumal ofSwarm Intellgence编委,IEEE CIS群体智能任务组主席,西交利物浦大学电子与电气工程系教授。1992年获东南大学博士学位,先后在美国、韩国、澳大利亚等地从事研究工作,曾任美国电子资讯系统公司专家长达9年。他还是《计算智能:从概念到实现》一书的作者之一。

内容简介

《群体智能》综合运用认知科学、社会心理学、人工智能和演化计算等学科知识,提供了一些非常有价值的新见解,并将这些见解加以应用,以解决困难的工程问题。书中首先探讨了基础理论,然后详尽展示如何将这些理论和模型应用于新的计算智能方法(粒子群)中,以适应智能系统的行为,最后描述了应用粒子群优化算法的好处,提供了强有力的优化、学习和问题解决的方法。群体智能是通过模拟自然界生物群体行为来实现人工智能的一种方法。《群体智能》主要面向计算机相关学科的高年级本科生或研究生以及相关领域的研究与开发技术人员。

图书目录

part one Foundations

chapter one Models and Concepts of Life and Intelligence

The Mechanics of Life and Thought

Stochastic Adaptation: Is Anything Ever Really Random?

The “Two Great Stochastic Systems”

The Game of Life: Emergence in Complex Systems

The Game of Life

Emergence

Cellular Automata and the Edge of Chaos

Artificial Life in Computer Programs

Intelligence: Good Minds in People and Machines

Intelligence in People: The Boring Criterion

Intelligence in Machines: The Turing Criterion

chapter two Symbols, Connections, and Optimization by Trial and Error

Symbols in Trees and Networks

Problem Solving and Optimization

A Super-Simple Optimization Problem

Three Spaces of Optimization

Fitness Landscapes

High-Dimensional Cognitive Space and Word Meanings

Two Factors of Complexity: NK Landscapes

Combinatorial Optimization

Binary Optimization

Random and Greedy Searches

Hill Climbing

Simulated Annealing

Binary and Gray Coding

Step Sizes and Granularity

Optimizing with Real Numbers

Summary

chapter three On Our Nonexistence as Entities: The Social Organism

Views of Evolution

Gaia: The Living Earth

Differential Selection

Our Microscopic Masters?

Looking for the Right Zoom Angle

Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization

Accomplishments of the Social Insects

Optimizing with Simulated Ants: Computational Swarm Intelligence

Staying Together but Not Colliding: Flocks, Herds, and Schools

Robot Societies

Shallow Understanding

Agency

Summary

chapter four Evolutionary Computation Theory and Paradigms

Introduction

Evolutionary Computation History

The Four Areas of Evolutionary Computation

Genetic Algorithms

Evolutionary Programming

Evolution Strategies

Genetic Programming

Toward Unification

Evolutionary Computation Overview

EC Paradigm Attributes

Implementation

Genetic Algorithms

An Overview

A Simple GA Example Problem

A Review of GA Operations

Schemata and the Schema Theorem

Final Comments on Genetic Algorithms

Evolutionary Programming

The Evolutionary Programming Procedure

Finite State Machine Evolution

Function Optimization

Final Comments

Evolution Strategies

Mutation

Recombination

Selection

Genetic Programming

Summary

chapter five Humans-Actual, Imagined, and Implied

Studying Minds

The Fall of the Behaviorist Empire

The Cognitive Revolution

Banduras Social Learning Paradigm

Social Psychology

Lewins Field Theory

Norms, Conformity, and Social Influence

Sociocognition

Simulating Social Influence

Paradigm Shifts in Cognitive Science

The Evolution of Cooperation

Explanatory Coherence

Networks in Groups

Culture in Theory and Practice

Coordination Games

The El Farol Problem

Sugarscape

Tesfatsions ACE

Pickers Competing-Norms Model

Latanés Dynamic Social Impact Theory

Boyd and Richersons Evolutionary Culture Model

Memetics

Memetic Algorithms

Cultural Algorithms

Convergence of Basic and Applied Research

Culture-and Life without It

Summary

chapter six Thinking Is Social

Introduction

Adaptation on Three Levels

The Adaptive Culture Model

Axelrods Culture Model

Experiment One: Similarity in Axelrods Model

Experiment Two: Optimization of an Arbitrary Function

Experiment Three: A Slightly Harder and More Interesting Function

Experiment Four: A Hard Function

Experiment Five: Parallel Constraint Satisfaction

Experiment Six: Symbol Processing

Discussion

Summary

part two The Particle Swarm and Collective Intelligence

chapter seven The Particle Swarm

Sociocognitive Underpinnings: Evaluate, Compare, and Imitate

Evaluate

Compare

Imitate

A Model of Binary Decision

Testing the Binary Algorithm with the De Jong Test Suite

No Free Lunch

Multimodality

Minds as Parallel Constraint Satisfaction Networks in Cultures

The Particle Swarm in Continuous Numbers

The Particle Swarm in Real-Number Space

Pseudocode for Particle Swarm Optimization in Continuous Numbers

Implementation Issues

An Example: Particle Swarm Optimization of Neural Net Weights

A Real-World Application

The Hybrid Particle Swarm

Science as Collaborative Search

Emergent Culture, Immergent Intelligence

Summary

chapter eight Variations and Comparisons

Variations of the Particle Swarm Paradigm

Parameter Selection

Controlling the Explosion

Particle Interactions

Neighborhood Topology

Substituting Cluster Centers for Previous Bests

Adding Selection to Particle Swarms

Comparing Inertia Weights and Constriction Factors

Asymmetric Initialization

Some Thoughts on Variations

Are Particle Swarms Really a Kind of Evolutionary Algorithm?

Evolution beyond Darwin

Selection and Self-Organization

Ergodicity: Where Can It Get from Here?

Convergence of Evolutionary Computation and Particle Swarms

Summary

chapter nine Applications

Evolving Neural Networks with Particle Swarms

Review of Previous Work

Advantages and Disadvantages of Previous Approaches

The Particle Swarm Optimization Implementation Used Here

Implementing Neural Network Evolution

An Example Application

Conclusions

Human Tremor Analysis

Data Acquisition Using Actigraphy

Data Preprocessing

Analysis with Particle Swarm Optimization

Summary

Other Applications

Computer Numerically Controlled Milling Optimization

Ingredient Mix Optimization

Reactive Power and Voltage Control

Battery Pack State-of-Charge Estimation

Summary

chapter ten Implications and Speculations

Introduction

Assertions

Up from Social Learning: Bandura

Information and Motivation

Vicarious versus Direct Experience

The Spread of Influence

Machine Adaptation

Learning or Adaptation?

Cellular Automata

Down from Culture

Soft Computing

Interaction within Small Groups: Group Polarization

Informational and Normative Social Influence

Self-Esteem

Self-Attribution and Social Illusion

Summary

chapter eleven And in Conclusion

Appendix A Statistics for Swarmers

Appendix B Genetic Algorithm Implementation

Glossary

References

Index