核磁共振的物理学和数学(英文)

核磁共振的物理学和数学(英文)
作 者: 理查德·安索格 马丁·格拉夫
出版社: 哈尔滨工业大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  Richard Ansorge,a retired senior lecturer at the Cavendish Laboratory Cambridge and a former fellow and tutor of Fitzwilliam College Cambridge. He has extensive experience of experimental high energy physics, including significant contributions to the CERN UA5 experiment on the proton-antiproton collider in the 1980s. More recently he has collaborated with research groups on the Cambridge Biomedical campus in several areas including improving 3D medical imaging methods including MRI and PET. He is author of more than 100 scientific publications in these fields. He is particularly interested in applying computers for processing data from complex instrumentation. This has applications which are equally relevant in both high energy physics and medical imaging. He wrote his first computer program in 1964 for EDSAC2 and has been coding ever since. Much more recently he has developed code for 3D medical image registration using GPUs which are probably 10(10) times more powerful than EDSAC.Martin Graves,a Cons...

内容简介

《核磁共振的物理学和数学(英文)》是一部英文版的物理学专著,中文书名可译为《核磁共振的物理学和数学》,《核磁共振的物理学和数学(英文)》的作者有两位,一位是理查德·安索格(Richard Ansorge),他是剑桥卡文迪什实验室(Cavendish Laboratory Cambridge)的高级讲师,也是剑桥菲茨威廉学院(Fitzwilliam College Cambridge)的研究员和大学导师。他在实验高能物理方面拥有丰富的经验,近,他与剑桥生物医学校区的研究小组进行了多个领域的合作,包括改进MRI和PET等3D医学成像方法。他出版了100多本有关这些领域的著作。他于1964年为EDSAC2编写了他的第1个计算机程序,此后一直从事编码工作,近,他使用GPU开发了用于三维医学图像配准的代码,其功能可能比EDSAC强10(10)倍。他拥有丰富的本科教学经验,还发表了几次关于医学成像的广受欢迎的演讲。

图书目录

Preface

Acknowledgements

Introduction

Symbols and Acronyms

Author biographies

1 The basics

1.1 A brief history of MRI

1.1.1 Spin and magnetic moments

1.1.2 NMR

1.1.3 MRI

1.1.4 Superconductivity

1.2 Proton spin

1.2.1 Precession

1.3 The Bloch equations

1.4 Signal generation

1.4.1 Reversing T2* effects-spin-echo

1.4.2 T1 Sensitivity-inversion recovery

1.4.3 Image contrast

1.5 Spatial encoding using magnetic field gradients

1.5.1 Lauterbur's tomographic method

1.5.2 Gradients and k-space

1.6 Spatialimage formation

1.6.1 Pulse sequences

1.6.2 Slice select

1.6.3 Phase encode

1.6.4 Frequency encode

1.6.5 Rewind and repeat

1.7 Conclusion

References

2 Magnetic field generation

2.1 Designing the main magnet

2.1.1 Magnetic field of circular coil

2.1.2 Combining coils

2.1.3 Off-axis fields

2.2 Designing gradient coils

2.2.1 Axial gradients

2.2.2 Transverse gradients

2.3 Practical issues

2.3.1 Main magnet

2.3.2 Keeping cool

2.3.3 Gradients

2.3.4 Pre-emphasis

2.3.5 Shielding and shimming

2.3.6 Safety

References

……

3 Radio frequency transmission and reception

4 Pulse sequences and images

5 Applications

6 Conclusion

Appendices

编辑手记