| 作 者: | 宋天龙 |
| 出版社: | 机械工业出版社 |
| 丛编项: | |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 暂缺 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
序
前言
第一部分 AIGC基础知识
第1章 AIGC赋能数据分析与挖掘2
1.1 探索主流的AIGC产品2
1.1.1 ChatGPT:AIGC的行业标杆2
1.1.2 New Bing Chat:Bing聊天助手3
1.1.3 GitHub Copilot:智能编程伙伴3
1.1.4 Microsoft 365 Copilot:Microsoft一站式办公AI4
1.1.5 Azure OpenAI:Azure云平台服务4
1.1.6 Claude:Anthropic AI工具5
1.1.7 Google Bard:Google AI对话工具5
1.1.8 文心一言:百度AI工具6
1.1.9 通义千问:阿里AI工具6
1.2 选择适合数据工作的AIGC产品6
1.2.1 产品选择攻略:应用场景与关键要素6
1.2.2 应用集成AIGC:一站式AI助手7
1.2.3 SaaS模式AIGC:灵活的AI as a Service 7
1.2.4 私有化部署AIGC:企业定制版AI 9
1.3 ChatGPT实操指南9
1.3.1 ChatGPT的常用技巧9
1.3.2 ChatGPT的高级功能12
1.4 New Bing Chat实操指南14
1.4.1 New Bing Chat的常用技巧14
1.4.2 New Bing Chat的高级功能15
1.5 AIGC驱动数据分析与挖掘变革18
1.5.1 技能要求:数据从业者的技能演进18
1.5.2 应用场景:数据工作的加速器19
1.5.3 人机协作:数据工作的新范式19
1.6 AIGC在数据工作中的注意事项20
1.6.1 基于最新知识的推理限制20
1.6.2 “一致性”观点的挑战20
1.6.3 数据结果审查与验证21
1.6.4 数据安全、数据隐私与合规问题21
1.6.5 知识产权及版权问题22
1.6.6 社会认知偏差影响数据推理22
1.6.7 难以解决大型任务的统筹与复杂依赖问题22
1.6.8 垂直领域数据和知识缺失问题22
1.6.9 上下文数据容量限制23
1.6.10 多模态语境的输入限制23
1.6.11 编造事实24
1.6.12 合理设置AIGC使用期望24
第2章 构建高质量Prompt的科学方法与最佳实践25
2.1 Prompt的基本概念25
2.2 Prompt对AIGC的影响和价值25
2.2.1 模型的输入来源25
2.2.2 控制模型复杂度26
2.2.3 提高内容生成质量26
2.2.4 个性化体验和内容定制27
2.3 Prompt输入的限制规则27
2.3.1 信息类型的限制27
2.3.2 数据格式的约束规则27
2.3.3 内容长度的合理限制28
2.3.4 对话主题的限制原则28
2.3.5 语法和语义的严格限制28
2.4 高质量Prompt的基本结构29
2.4.1 角色设定:明确AI角色与工作的定位29
2.4.2 任务类型:明确AI任务的类别与性质29
2.4.3 细节定义:准确定义期望AI返回的输出30
2.4.4 上下文:让AI了解更多背景信息30
2.4.5 约束条件:限制AI返回的内容31
2.4.6 参考示例:优质示例的参考借鉴31
2.5 提升Prompt质量的关键要素32
2.5.1 指令动词:精确引导模型行动32
2.5.2 数量词:明确量化任务要求33
2.5.3 函数和公式:运用数学逻辑的威力34
2.5.4 标记符号:有效提示引用信息34
2.5.5 条件表达:准确限定输出条件35
2.5.6 地理名词:地理位置信息的界定35
2.5.7 日期和时间词:数据周期的明确表达36
2.5.8 比较词:精确比较与对比要求36
2.5.9 参考示例词:基于样板输出内容36
2.5.10 语言设置:设定合适的输出语言37
2.5.11 否定提示词:反向界定与排除歧义37
2.6 构建Prompt的最佳实践38
2.6.1 明确目标和场景:精准设定任务目标38
2.6.2 任务分解:拆解大型、复杂任务39
2.6.3 交互反馈:基于正负向反馈的优化40
2.6.4 让AI提问:引导模型主动提问41
2.6.5 控制上下文:合理管理对话信息量41
2.6.6 引导、追问和连续追问:优化对话交互42
2.6.7 语言简明扼要:语言表达精炼43
2.6.8 使用英文Prompt:借助英文提升质量43
2.6.9 输入结构化数据:让AI充分理解数据44
2.6.10 提供参考信息:确保信息完整性44
2.6.11 增加限制:避免输出宽泛内容45
2.6.12 明确告知AI:不知道时请回答“不知道”45
2.7 精调Prompt示例:引爆AIGC优质内容46
2.7.1 逐步启发和引导式的Prompt精调46
2.7.2 从广泛到收缩的Prompt精调47
2.7.3 利用反转角色的Prompt精调48
2.7.4 基于少样本的先验知识的Prompt精调49
2.7.5 基于调整模型温度参数的Prompt精调50
2.7.6 基于关键问题的Prompt精调51
2.8 Prompt构建工具:轻松撰写提示词52
2.8.1 Prompt构建工具简介52
2.8.2 New Bing Chat的提示词构建和引导功能52
2.8.3 ChatGPT第三方客户端工具的Prompt模板53
2.8.4 ChatGPT Prompt Generator:AI驱动的Prompt构建工具56
2.9 常见问题56
2.9.1 为什么Prompt相同AIGC答案却不一样56
2.9.2 会写Prompt就能做数据分析与挖掘吗57
2.9.3 如何避免Prompt的内部冲突和矛盾57
2.9.4 如何避免Prompt的内