| 作 者: | 马园园 |
| 出版社: | 科学技术文献出版社 |
| 丛编项: | |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 暂缺 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
1 绪论
1.1 研究背景与研究意义
1.1.1 研究背景
1.1.2 研究意义
1.2 国内外研究进展
1.2.1 信息融合研究现状述评
1.2.2 基于机器学习的信息融合研究现状述评
1.2.3 存在的主要问题
1.3 研究内容与本书结构
1.3.1 研究内容
1.3.2 本书结构
1.4 本书主要贡献
2 信息融合相关理论
2.1 信息融合概念与原理
2.1.1 信息融合概念
2.1.2 信息融合原理
2.2 信息融合策略
2.2.1 早期融合
2.2.2 中期融合
2.2.3 后期融合
2.3 子空间学习理论
2.3.1 多视角谱聚类
2.3.2 连接的多视角非负矩阵分解
2.3.3 一致的多视角非负矩阵分解
2.3.4 基于多、图的信息融合
2.4 本章小结
3 基于对称非负矩阵分解的信息融合模型
3.1 对称非负矩阵分解
3.1.1 相似性度量
3.1.2 目标函数与优化
3.2 SNMF与核K均值聚类、谱聚类的等效性
3.2.1 核K均值聚类
3.2.2 谱聚类
3.2.3 实例
3.3 基于对称非负矩阵分解的聚类融合模型
3.3.1 建模思想
3.3.2 基本假设和一致性矩阵表述
3.3.3 基于对称非负矩阵分解的聚类融合模型的建立
3.3.4 算法优化
3.4 实例分析与讨论
3.4.1 数据集描述与预处理
3.4.2 实验结果
3.4.3 分析与讨论
3.5 本章小结
4 考虑图正则化的对称非负矩阵分解信息融合模型
4.1 正则化思想
4.1.1 正则化理论
4.1.2 图正则化框架
4.2 基于Laplacian正则化的对称非负矩阵分解融合模型
4.2.1 建模思想概述
4.2.2 基本假设
4.2.3 基于Laplacian正则化的对称非负矩阵分解融合模型
4.2.4 算法优化
4.2.5 实例分析与讨论
4.3 基于Hessian正则化的对称非负矩阵分解融合模型
4.3.1 建模思想概述
4.3.2 基本假设和定义
4.3.3 基于Hessian正则化的对称非负矩阵分解融合模型
4.3.4 算法优化
4.3.5 实例分析与讨论
4.4 基于对称非负矩阵分解的预测模型
4.4.1 基于对称非负矩阵分解的实时样本预测模型
4.4.2 实验分析与讨论
4.5 本章小结
……
5 基于对称非负矩阵分解融合模型在跨模态检索中的应用
6 其他多视角信息融合模型及应用
7 总结与展望
参考文献
附录
致谢