OpenCV机器学习(影印版)

OpenCV机器学习(影印版)
作 者: Michael,Beyeler
出版社: 东南大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  迈克尔·贝耶勒是华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。他也是2015年Packt出版的《OpenCV with Python Blueprints》一书的作者,该书是构建高级计算机视觉项目的实用指南。同时他也是多个开源项目的积极贡献者,具有Python、C/C++、CUDA、MATLAB和Android的专业编程经验。他还拥有加利福尼亚大学欧文分校计算机科学专业的博士学位、瑞士苏黎世联邦理工学院生物医学专业的硕士学位和电子工程专业的学士学位。当他不“呆头呆脑”地研究大脑时,他会攀登雪山、参加现场音乐会或者弹钢琴。

内容简介

《OpenCV机器学习(影印版)》首先介绍了统计学习的基本概念,例如分类和回归。介绍完所有的基础知识之后,就开始探究如决策树、支持向量机、贝叶斯网络等算法,学习如何将它们与其他OpenCV功能综合运用。你的机器学习技能会随着书中内容的进度一同提高,直到准备好学习当前热门的主题:深度学习。在《OpenCV机器学习(影印版)》的结尾,你可以根据现有的源代码构建或是从头开发自己的算法来解决自己碰到的机器学习问题!

图书目录

Preface

Chapter 1:A Taste of Machine Learning

Getting started with machine learning

Problems that machine learning can solve

Getting started with Python

Getting started with OpenCV

Installation

Getting the latest code for this book

Getting to grips with Python's Anaconda distribution

Installing OpenCV in a conda environment

Verifying the installation

Getting a glimpse of OpenCV's ML module

Summary

Chapter 2: Working with Data in OpenCV and Python

Understanding the machine learning workflow

Dealing with data using OpenCV and Python

Starting a new IPython or Jupyter session

Dealing with data using Python's NumPy package

Importing NumPy

Understanding NumPy arrays

Accessing single array elements by indexing

Creating multidimensional arrays

Loading external datasets in Python

Visualizing the data using Matplotlib

Importing Matplotlib

Producing a simple plot

Visualizing data from an external dataset

Dealing with data using OpenCV's TrainData container in C++

Summary

Chapter 3: First Steps in Supervised Learning

Understanding supervised learning

Having a look at supervised learning in OpenCV

Measuring model performance with scoring functions

Scoring classifiers using accuracy, precision, and recall

Scoring regressors using mean squared error, explained variance, and R squared

Using classification models to predict class labels

Understanding the k-NN algorithm

Implementing k-NN in OpenCV

Generating the training data

Training the classifier

Predicting the label of a new data point

Using regression models to predict continuous outcomes

Understanding linear regression

Using linear regression to predict Boston housing prices

Loading the dataset

Training the model

Testing the model

Applying Lasso and ridge regression

Classifying iris species using logistic regression

Understanding logistic regression

Loading the training data

Making it a binary classification problem

Inspecting the data

Splitting the data into training and test sets

Training the classifier

Testing the classifier

Summary

Chapter 4: Representing Data and Engineering Features

Understanding feature engineering

Preprocessing data

Standardizing features

Normalizing features

Scaling features to a range

Binarizing features

Handling the missing data

Understanding dimensionality reduction

Implementing Principal Component Analysis (PCA) in OpenCV

Implementing Independent Component Analysis (ICA)

Implementing Non-negative Matrix Factorization (NMF)

Representing categorical variables

Representing text features

Representing images

Using color spaces

Encoding images in RGB space

Encoding images in HSV and HLS space

Detecting corners in images

Chapter 5: Using Decision Trees to Make a Medical Diagnosis

Chapter 6: Detecting Pedestrians with Support Vector Machines

Chapter 7: Implementing a Spam Filter with Bayesian Learning

Chapter 8: Discovering Hidden Structures with Unsupervised Learning

Chapter 9: Using Deed Learning to Classifv Handwritten Diqits

Chapter 10: Combining Different Algorithms into an Ensemble

Chapter 11:Selecting the Right Model with Hyperparameter Tuning

Chapter 12: Wrapping Up