| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
第1
章
核物理与核辐射基础1.1
原子模型
·················································································21.1.1
关于原子——古典原子论和四元素论1.1.2
原子模型——原子有核还是无核1.1.3
关于原子核——带正电的原子核为什么不分崩离析1.1.4
原子核的大小——坐镇原子中心的原子核1.2
卢瑟福散射实验
·············································································41.2.1
卢瑟福——实验证明原子核的存在1.2.2
关于电子——带负电荷的粒子1.2.3
正电子——带正电荷的电子1.2.4
加速器——产生高能粒子的有效手段1.3
核子与核力
·················································································61.3.1
中子——不带电荷的粒子1.3.2
原子序数和质量数——对元素加以区别的原子序数1.3.3
介子——汤川秀树预言的粒子1.3.4
幻数(魔法数)——中子数和质子数的微妙平衡1.4
核反应与化学反应
·············································································81.4.1
核反应——使核发生变化的反应1.4.2
核裂变的发现——铀235
核裂变为两块1.4.3
原子核的结合能——为什么核子能紧密相处1.4.4
质量亏损和能量——狭义相对论1.5
质量亏损与核能
···································································101.5.1
核裂变能量——高能量的发生1.5.2
化学能与核能——二者来源不同且数值差异极大1.5.3
核裂变产物是如何产生的——高放射性水平的核废物1.5.4
同位素——化学性质相同但质量数不同1.6
裂变、衰变和聚变
···································································121.6.1
阈值反应——进屋必须跨过门坎1.6.2
半衰期——元素的衰变存在规则性1.6.3
隧道效应——原子具有穿墙术1.6.4
核聚变与核裂变的不同——轻核聚合与重核分裂1.7
核燃料与核能
············································································141.7.1
铀——大可不必“谈铀色变”1.7.2
钚——既有武器级又有反应堆级1.7.3
超铀元素——应用领域也很广泛,不可替代的元素1.7.4
氚(超重氢)——混凝土也能透过1.8
放射线
········································································161.8.1
放射线的种类——来自宇宙的放射线1.8.2
放射线和放射性——放射能力即为辐射源强度1.8.3
由放射线而产生的能量——物质中的能量1.8.4
放射线对身体的影响——对DNA
造成损伤的放射线1.9
放射线的危害
······································································181.9.1
放射当量剂量和对健康的影响——100mSv
以上即影响健康1.9.2
戈瑞和希沃特——吸收剂量和当量剂量的单位1.9.3ICRP
的建议和推荐——放射线利用的向导1.9.4X
射线与γ
射线的不同——穿透力极强的放射线1.10
吸收剂量与当量剂量
······································································201.10.1X
射线及γ
射线与电子的反应——电子的弹子房1.10.2天然放射性——日常生活中的放射线1.10.3放射线防护——为保护人类的健康和安全1.10.4放射性活度,吸收剂量和当量剂量——对食品等的限制值1.11
放射线的屏蔽与防护
····························································221.11.1辐射屏蔽材料——屏蔽材料依射线不同而异1.11.2放射线测量仪的工作原理——利用放射线产生的效应1.11.3超铀元素的应用——Am-241
用于离子式烟雾探测器1.11.4居里夫人——杰出的女科学家及核科学家一家人定义及名词术语汇编思考题及练习题参考文献第2
章
核能基础2.1
反应堆是利用核能的有效手段·········································262.1.1
反应堆中发生的核裂变——如何获得核裂变能2.1.2
中子能量与核裂变——热中子更容易引发核裂变2.1.3
极高密度的能源——来自于爱因斯坦方程E=mc2
的巨大能量输出2.1.4
链式反应——产生核能的反应2.2
如何实现可控链式反应··························································282.2.1
原子弹和核反应堆的差别——反应堆要绝对确保不发生核爆炸2.2.2
临界——中子吸收和中子生成之间的平衡2.2.3
中子的减速——慢中子容易引发核裂变2.2.4
慢化剂和冷却剂——水可以“双肩挑”2.3
核燃料及核燃料再循环·································302.3.1
核燃料——核能之源2.3.2
核燃料是如何制造出来的——从矿石到黄饼,再经同位素分离2.3.3
核燃料的后处理——燃料的再循环2.3.4
核燃料循环——核资源的再利用2.4
反应堆类型(1)
··························································322.4.1
反应堆的种类——形式决定于目的2.4.2
中子能谱与反应堆——表征反应堆特性的指标2.4.3
轻水堆——水既做慢化剂又做冷却剂2.4.4
改良型轻水堆——更安全、更经济的反应堆2.5
反应堆类型(2)
······························································342.5.1
气冷堆——到高温气冷堆已历三世2.5.2
钚热堆——目前最有效的核燃料再循环法2.5.3
快中子堆——“快”意味着中子的能量高2.5.4
核燃料的燃耗——已“燃烧”的量2.6
反应堆的调节和控制·················································362.6.1
反应堆的控制——中子数量是关键所在2.6.2
反应性的平衡——有各种各样的反应性2.6.3
负的反应性反馈——反应堆本身就应具备的控制机构2.6.4
核能世界中的第一次——芝加哥1
号堆和美国在日本投下的两颗原子弹2.7
核事故(1)
······························································382.7.1
共同培育核电发展的良好舆论环境2.7.2
核事故分级标准——核事故从0
~
级2.7.3
美国三哩岛核事故——历史上最早的核电厂事故2.7.4
前苏联切尔诺贝利核事故——核污染无国界2.8
核事故(2)
···········································································402.8.1
“文殊”二次回路的钠泄漏事故——安全隐患必须防微杜渐2.8.2JCO
临界事故——日本最早的临界事故2.8.3
“3·11”东日本大地震福岛核电厂事故——是天灾还是人祸2.8.4
反应堆的紧急停堆——插入安全棒2.9
核事故(3)
························································································422.9.1
冷却用电源的确保——重大事故引发电源的丧失2.9.2
堆芯熔化,氢爆炸——过热导致堆芯熔化2.9.3
衰变热——反应堆的余热2.9.4
千万不能发生再临界——必须确保控制系统的健全性2.10
重大核事故后对核安全提出更严格的要求·················································442.10.1核安全的定义2.10.2核事故所带来的危害及影响2.10.3修订核安全法规,完善核监管制度——核安全政策2.10.4中国的核安全观2.11
如何保证核安全
···············································································462.11.1防止核劫持——如何防劫防盗2.11.2核电厂从选址到运行——许可证制度2.11.3核电厂的人员许可证——操纵员和高级操纵员2.11.4安全审查和定期检查——重点确认“停堆”“冷却”“包容”三个关键环节2.12
放射性废物处理
·········································································482.12.1反应堆周围的核监测——对辐射剂量和剂量的变化进行监测2.12.2放射性废物——需要特殊处理的核垃圾2.12.3反应堆的退役——必须做到善始善终2.12.4反应堆的退役不能一蹴而就2.13
中国的核废料如何处理与处置··························································502.13.1放射性废弃物的来源及其特征2.13.2放射性废弃物处置原则2.13.3放射性废物的处理流程2.13.4放射性废物的处理和处置方法定义及名词术语汇编思考题及练习题参考文献第3
章
核能利用中的核材料3.1
核爆炸和核反应堆的原理·····································································543.1.1
天然的核反应堆3.1.2
核爆炸原理3.1.3
核反应堆原理3.1.4
核能利用现状3.2
铀浓缩
·····························································································563.2.1
铀的富集度与临界质量3.2.2
铀浓缩法(1)——气体扩散法3.2.3
铀浓缩法(2)——离心分离法3.2.4
铀浓缩法(3)——原子激光法3.2.5
铀浓缩法(4)——分子激光法3.3
核反应堆的种类及其结构·········································································583.3.1
核反应堆的种类3.3.2
压水堆3.3.3
沸水堆3.3.4
轻水堆的安全性3.4
热中子堆中钚的使用
·······························································603.4.1
钚热堆的原理3.4.2MOX
核材料3.4.3
两种核燃料的使用对比3.4.4
采用MOX
核材料的好处3.5
快中子增殖堆
···········································································623.5.1
热中子堆和快中子堆3.5.2
快中子增殖堆与轻水堆的比较3.5.3
利用快中子增殖堆实现钚燃料的增殖3.5.4
快中子增殖堆的结构3.6
核反应堆用材料
·········································································643.6.1
中子慢化材料3.6.2
中子吸收材料3.6.3
包壳材料和其他结构材料3.6.4
结构材料的辐照损伤3.7
压水堆和沸水堆用的燃料组件······················································663.7.1
压水堆燃料组件3.7.2
燃料元件棒3.7.3UO2
燃料芯块3.7.4
沸水堆燃料组件3.8
核电厂的结构部件及所用材料···························································683.8.1
核电厂的主要部件及功能3.8.2
各类反应堆的主要部件用材料3.9
压水堆核电厂结构及所用材料················································703.9.1
第一道安全屏障:燃料芯块二氧化铀陶瓷晶体(核燃料)3.9.2
第二道安全屏障:燃料包壳3.9.3
第三道安全屏障:压力容器和一次回路压力边界3.9.4
第四道安全屏障:安全壳3.10
核反应堆用石墨
·············································································723.10.1天然石墨和人造石墨3.10.2高密度、高强度、高纯度的“三高”石墨3.10.3核反应堆用石墨的生产工艺3.10.4核石墨的应用3.11
核燃料循环
·················································································743.11.1核燃料的循环路径3.11.2核燃料棒的构造3.11.3核燃料棒的后处理工程3.11.4核燃料棒的安全隐患3.12
辐射能和放射线
·················································································763.12.1辐射能和放射线的定义3.12.2放射性核素3.12.3放射线对人的危害3.13
“3·11”东日本大地震福岛核电厂事故分析·····················································783.13.1强地震紧急停堆后所有水冷系统失灵3.13.2核余热及衰变产生的热量足以使燃料元件熔化3.13.3高温熔体穿透压力壳3.13.4高放射性核燃料透过压力壳泄漏到地面、海水乃至空气中3.14
典型核电厂事故分析
·············································································803.14.1国际核事故分级3.14.2美国三哩岛核事故3.14.3前苏联切尔诺贝利核事故3.15
严重事故——燃料熔化·······························································823.15.1何谓严重事故3.15.2衰变热使温度上升——失水事故3.15.3燃料熔化引起堆芯内部重新配置3.15.4形成“残渣床”和熔池3.16
极严重的核事故——燃料泄漏·································································843.16.1“跑离”升温或“熔断”升温3.16.2堆芯熔化3.16.3燃料泄漏3.17
核聚变和聚变能的应用···········································································863.17.1自然的太阳和人造太阳3.17.2核聚变发电属于“常闭型”3.17.3激光惯性约束核聚变3.18
托克马克装置的主体结构及所用材料·················································883.18.1磁惯性约束核聚变3.18.2托克马克聚变堆对第一壁材料的要求3.18.3核聚变既涉及又惠及广泛的技术领域3.18.4核聚变反应堆的结构和聚变能应用前景定义及名词术语汇编思考题及练习题参考文献第4
章
核电厂主要设备及核材料4.1
世界核电发展历史和现状····································································924.1.1
核能的开端与核电的产生4.1.2
从第一代到第四代核电机组4.1.3
世界核电发展现状4.1.4
世界核电发展归于理性4.2
中国核电发展后来者居上(1)
···································································944.2.1
中国核电产业从无到有4.2.2
中国的核能核工业发展简况4.2.3
中国核电发展的四个阶段4.2.4
国家核电核工业发展的组织架构4.3
中国核电发展后来者居上(2)
·····················································964.3.1
中国的核电——后来居上,发展最快4.3.2
中国的第三代核电4.3.3
中国核电着眼海上4.3.4
加强国际核安全体系,推进全球核安全治理——推进核安全国际合作4.4
不同堆型各有所长(1)
··········································································984.4.1
压水堆——历史悠久,技术成熟4.4.2
沸水堆——压水堆的“孪生姐妹”4.4.3
重水堆——重水作慢化剂,天然铀作燃料4.4.4
超临界水冷堆——功率密度和热效率更高4.5
不同堆型各有所长(2)
····························································1004.5.1
高温气冷堆4.5.2
快中子增殖堆的结构4.5.3
快中子增殖堆的发展状况4.6
压水堆电厂的结构和原理·································································
1024.6.1
典型的压水堆电厂外貌和核电厂的组成4.6.2
压水堆核电厂原理4.6.3
核岛(反应堆厂房)和常规岛(汽轮机厂房)4.6.4
燃料厂房和其他厂房4.7
各类核材料的选材原则··································································
1064.7.1
选择核材料的首要标准——满足功能要求4.7.2
核燃料为什么选择二氧化铀而非铀合金4.7.3
燃料包壳为什么选择锆合金4.7.4
作为结构材料的不锈钢和高镍合金4.8
核电压力容器用钢的选材及演化历史···············································
1084.8.1
核电压力容器用钢的演化历史4.8.2SA508
系列钢中的化学成分和力学性能4.9
SA508
系列钢中的主要元素及其作用························································
1104.9.1
对核电压力容器用钢的性能要求4.9.2SA508
系列钢中的主要元素及其作用4.10
核反应堆压力容器及蒸汽发生器的制造················································
1124.10.1核反应堆压力容器4.10.2压水堆核电厂核岛部分的大型锻件4.10.3SA508-3
钢的组织与热处理4.11
核压力容器的辐照损伤·····································································
1144.11.1压力容器钢辐照脆化4.11.2辐照脆化机制4.11.3高强度低合金钢大型锻件中的氢脆现象4.12
核燃料组件和控制棒组件·····························································
1164.12.1上部堆内构件和下部堆内构件4.12.2核燃料组件的组成及装料4.12.3控制棒组件及其驱动机构4.12.4材料在核安全中的重要作用4.13
反应堆的四道安全屏障·································································
1184.13.1反应堆的四道安全屏障4.13.2由UO2
粉末制作二氧化铀陶瓷核燃料芯块4.13.3作为燃料包壳管的锆合金4.14
核电厂的主要设备
···································································
1204.14.1反应堆冷却剂泵4.14.2蒸汽发生器和稳压器4.14.3核电厂用汽轮机和发电机4.14.4AP1000
机组采用的非能动安全系统4.15
高铁和核电——“一带一路”的两根支柱····················································
1224.15.12030
年核电装机容量将达到1.5
亿kW4.15.2高铁与核电是输出战略的两个支柱4.15.3“中国制造2025”关于核电产业发展方针4.15.4在海外,到2020
年要完成中国造核电厂6~8
座4.16
中国核电进军英国和阿根廷·································································
1244.16.1中国广核集团向英国三个核电厂出资,布拉德韦尔采用“华龙一号”4.16.2与英国、欧洲大陆签署多项合作协议4.16.3中国核工业集团与阿根廷签署建设“华龙一号”合同4.16.4以罗马尼亚为据点,展开向欧洲的核电技术服务4.17
与法、美等国进一步合作································································
1264.17.1与法国共同实施后处理计划4.17.2与法国共同开拓世界核能市场4.17.3更新核能合作协议,美、中延续蜜月期4.17.4形影相吊的日本定义及名词术语汇编思考题及练习题参考文献