| 作 者: | 麦金尼 |
| 出版社: | 东南大学出版社 |
| 丛编项: | |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 暂缺 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
Preface
1. Preliminaries
What Is This Book About?
Why Python for Data Analysis?
Python as Glue
Solving the "Two-Language" Problem
Why Not Python?
Essential Python Libraries
NumPy
pandas
matplotlib
IPython
SciPy
Installation and Setup
Windows
Apple OS X
GNU/Linux
Python 2 and Python 3
Integrated Development Environments (IDEs)
Community and Conferences
Navigating This Book
Code Examples
Data for Examples
Import Conventions
Jargon
Acknowledgements
2. Introductory Examples
1.usa.gov data from bit.ly
Counting Time Zones in Pure Python
Counting Time Zones with pandas
MovieLens 1M Data Set
Measuring rating disagreement
US Baby Names 1880-2010
Analyzing Naming Trends
Conclusions and The Path Ahead
3. IPython: An Interactive Computing and Development Environment
IPython Basics
Tab Completion
Introspection
The %run Command
Executing Code from the Clipboard
Keyboard Shortcuts
Exceptions and Tracebacks
Magic Commands
Qt-based Rich GUI Console
Matplotlib Integration and Pylab Mode
Using the Command History
Searching and Reusing the Command History
Input and Output Variables
Logging the Input and Output
Interacting with the Operating System
Shell Commands and Aliases
Directory Bookmark System
Software Development Tools
Interactive Debugger
Timing Code: %time and %timeit
Basic Profiling: %prun and %run-p
Profiling a Function Line-by-Line
IPython HTML Notebook
Tips for Productive Code Development Using IPython
Reloading Module Dependencies
Code Design Tips
Advanced IPython Features
Making Your Own Classes IPython-friendly
Profiles and Configuration
Credits
4. NumPy Basics: Arrays and Vectorized Computation
The NumPy ndarray: A Multidimensional Array Object
Creating ndarrays
Data Types for ndarrays
……
5.Gettinq Started with pandas
6.Data Loading,Storage,and File Formats
7.Data Wrangling:Clean t Transform l Merge t Reshape
8.Plotting and Visualization.
9.Data Aggregation and Group Operations
10.Time Series
11.Financial and Economic Data Applications
12.Advanced NumPy
Appendix:Python Language Essentials
Index