| 作 者: | 丁世飞 |
| 出版社: | 清华大学出版社 |
| 丛编项: | 21世纪高等学校规划教材 |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 工学 教材 研究生/本科/专科教材 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
第1章 绪论
1.1 什么是人工智能
1.1.1 智能的定义
1.1.2 人工智能的定义
1.2 人工智能的发展
1.2.1 孕育期
1.2.2 摇篮期
1.2.3 形成期
1.2.4 发展期
1.2.5 实用期
1.2.6 稳步增长期
1.3 人工智能的研究方法
1.3.1 符号主义
1.3.2 连接主义
1.3.3 行为主义
1.4 人工智能的应用领域
1.4.1 机器学习
1.4.2 知识发现和数据挖掘
1.4.3 专家系统
1.4.4 模式识别
1.4.5 自然语言处理
1.4.6 智能决策支持系统
1.4.7 人工神经网络
1.4.8 自动定理证明
1.4.9 机器人学
1.4.10 分布式人工智能与智能体
1.5 小结
习题
第2章 知识表示
2.1 概述
2.1.1 知识与知识表示
2.1.2 知识表示方法
2.2 谓词逻辑表示法
2.2.1 命题逻辑
2.2.2 谓词逻辑
2.3 产生式表示法
2.3.1 产生式可表示的知识种类及其基本形式
2.3.2 知识的表示方法
2.3.3 产生式系统的组成
2.3.4 产生式系统的推理方式
2.3.5 产生式表示法的特点
2.4 语义网络表示法
2.4.1 语义网络的概念及结构
2.4.2 语义网络的基本语义联系
2.4.3 语义网络表示知识的方法及步骤
2.4.4 语义网络知识表示举例
2.4.5 语义网络的推理过程
2.4.6 语义网络表示法的特点
2.5 框架表示法
2.5.1 框架结构
2.5.2 框架表示知识举例
2.5.3 推理方法
2.5.4 框架表示法的特点
2.6 脚本表示法
2.6.1 脚本的定义与组成
2.6.2 用脚本表示知识的步骤
2.6.3 用脚本表示知识的推理方法
2.6.4 脚本表示法的特点
2.7 面向对象的知识表示
2.7.1 面向对象的基本概念
2.7.2 面向对象的知识表示
2.7.3 面向对象方法学的主要观点
2.8 小结
习题
第3章 搜索策略
3.1 引言
3.2 基于状态空间图的搜索技术
3.2.1 图搜索的基本概念
3.2.2 状态空间搜索
3.2.3 一般图的搜索算法
3.3 盲目搜索
3.3.1 宽度优先搜索
3.3.2 深度优先搜索
3.3.3 有界深度搜索和迭代加深搜索
3.3.4 搜索最优策略的比较
3.4 启发式搜索
3.4.1 启发性信息和评估函数
3.4.2 启发式搜索算法A
3.4.3 实现启发式搜索的关键因素和A*算法
3.4.4 迭代加深A*算法
3.4.5 回溯策略和爬山法
3.5 问题规约和与/或图启发式搜索
3.5.1 问题规约
3.5.2 与/或图表示
3.5.3 与/或图的启发式搜索
3.6 博弈
3.6.1 极大极小过程
3.6.2 α-β过程
3.7 小结
习题
第4章 确定性推理
第5章 不确定性推理
第6章 机器学习
第7章 专家系统
第8章 支持向量机
第9章 神经计算
第10章 进化计算
第11章 人工智能的争论与展望
参考文献