机器学习算法(第2版 影印版 英文版)

机器学习算法(第2版 影印版 英文版)
作 者: 朱塞佩·博纳科尔索
出版社: 东南大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《机器学习算法(第2版 影印版 英文版)》作者简介

内容简介

机器学习因运用大数据实现强大且快速的预测而大受欢迎。然而,其强大的输出背后,真正力量来自复杂的算法,涉及大量的统计分析,以大数据作为驱动而产生实质性的洞察力。《机器学习算法(第2版 影印版 英文版)》第2版的机器学习算法引导您取得与机器学习过程中的主要算法相关的显著开发结果,并帮助您加强和掌握有监督,半监督和加强学习等领域的统计解释。一旦全面吃透了算法的核心概念,您将基于广泛的库(如sclkit-learn、NLTK、TensorFlow和Keras)来探索现实世界的示例。您将发现新的主题,如主成分分析(PCA)、独立成分分析(ICA)、贝叶斯回归、判别分析、高级聚类和高斯混合等。

图书目录

Preface

Chapter 1: A Gentle Introduction to Machine Learning

Introduction - classic and adaptive machines

Descriptive analysis

Predictive analysis

Only learning matters

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

Computational neuroscience

Beyond machine learning - deep learning and bio-inspired adaptive

systems

Machine learning and big data

Summary

Chapter 2: Important Elements in Machine Learning

Data formats

Multiclass strategies

One-vs-all

One-vs-one

Learnability

Underfitting and overfitting

Error measures and cost functions

PAC learning

Introduction to statistical learning concepts

MAP learning

Maximum likelihood learning

Class balancing

Resampling with replacement

SMOTE resampling

Elements of information theory

Entropy

Cross-entropy and mutual information

Divergence measures between two probability distributions

Summary

Chapter 3: Feature Selection and Feature Engineering

scikit-learn toy datasets

Creating training and test sets

Managing categorical data

Managing missing features

Data scaling and normalization

Whitening

Feature selection and filtering

Principal Component Analysis

Non-Negative Matrix Factorization

Sparse PCA

Kernel PCA

Independent Component Analysis

Atom extraction and dictionary learning

Visualizing high-dimensional datasets using t-SNE

Summary

Chapter 4: Regression Algorithms

Linear models for regression

A bidimensional example

Linear regression with scikit-learn and higher dimensionality

R2 score

Explained variance

Regressor analytic expression

Ridge, Lasso, and ElasticNet

Ridge

Lasso

ElasticNet

Robust regression

RANSAC

Huber regression

Bayesian regression

Polynomial regression

Isotonic regression

Summary

Chapter 5: Linear Classification Algorithms

Linear classification

Logistic regression

Implementation and optimizations

Stochastic gradient descent algorithms

Passive-aggressive algorithms

Passive-aggressive regression

Finding the optimal hyperparameters through a grid search

Classification metrics

Confusion matrix

Precision

Recall

F-Beta

Cohen's Kappa

Global classification report

Learning curve

ROC curve

Summary

Chapter 6: Naive Bayes and Discriminant Analysis

Bayes' theorem

Naive Bayes classifiers

Naive Bayes in scikit-learn

Bernoulli Naive Bayes

Multinomial Naive Bayes

An example of Multinomial Naive Bayes for text classification

Gaussian Naive Bayes

Discriminant analysis

Summary

Chapter 7: Support Vector Machines

Linear SVM

SVMs with scikit-learn

Linear classification

Kernel-based classification

Radial Basis Function

Polynomial kernel

Sigmoid kernel

Custom kernels

Non-linear examples

v-Support Vector Machines

Support Vector Regression

An example of SVR with the Airfoil Self-Noise dataset

Introducing semi-supervised Support Vector Machines (S3VM)

Summary

Chapter 8: Decision Trees and Ensemble Learning

Binary Decision Trees

Binary decisions

Impurity measures

Gini impurity index

Cross-entropy impurity index

Misclassification impurity index

Feature importance

Decision Tree classification with scikit-learn

Decision Tree regression

Example of Decision Tree regression with the Concrete Compressive

Strength dataset

Introduction to Ensemble Learning

Random Forests

Feature importance in Random Forests

AdaBoost

Gradient Tree Boosting

Voting classifier

Summary

Chapter 9: Clustering Fundamentals

Clustering basics

k-NN

Gaussian mixture

Finding the optimal number of components

K-means

Finding the optimal number of clusters

Optimizing the inertia

Silhouette score

Calinski-Harabasz index

Cluster instability

Evaluation methods based on the ground truth

Homogeneity

Completeness

Adjusted Rand Index

Summary

Chapter 10: Advanced Clustering

DBSCAN

Spectral Clustering

Online Clustering

Mini-batch K-means

BIRCH

Biclustering

Summary

Chapter 11 : Hierarchical Clustering

Hierarchical strategies

Agglomerative Clustering

Dendrograms

Agglomerative Clustering in scikit-learn

Connectivity constraints

Summary

Chapter 12: Introducing Recommendation Systems

Naive user-based systems

Implementing a user-based system with scikit-learn

Content-based systems

Model-free (or memory-based) collaborative filtering

Model-based collaborative filtering

Singular value decomposition strategy

Alternating least squares strategy

ALS with Apache Spark MLlib

Summary

Chapter 13: Introducing Natural Language Processing

NLTK and built-in corpora

Corpora examples

The Bag-of-Words strategy

Tokenizing

Sentence tokenizing

Word tokenizing

Stopword removal

Language detection

Stemming

Vectorizing

Count vectorizing

N-grams

TF-IDF vectorizing

Part-of-Speech

Named Entity Recognition

A sample text classifier based on the Reuters corpus

Summary

Chapter 14: Topic Modeling and Sentiment Analysis in NLP

Topic modeling

Latent Semantic Analysis

Probabilistic Latent Semantic Analysis

Latent Dirichlet Allocation

Introducing Word2vec with Gensim

Sentiment analysis

VADER sentiment analysis with NLTK

Summary

Chapter 15: Introducing Neural Networks

Deep learning at a glance

Artificial neural networks

MLPs with Keras

Interfacing Keras to scikit-learn

Summary

Chapter 16: Advanced Deep Learning Models

Deep model layers

Fully connected layers

Convolutional layers

Dropout layers

Batch normalization layers

Recurrent Neural Networks

An example of a deep convolutional network with Keras

An example of an LSTM network with Keras

A brief introduction to TensorFIow

Computing gradients

Logistic regression

Classification with a multilayer perceptron

Image convolution

Summary

Chapter 17: Creating a Machine Learning Architecture

Machine learning architectures

Data collection

Normalization and regularization

Dimensionality reduction

Data augmentation

Data conversion

Modeling/grid search/cross-validation

Visualization

GPU support

A brief introduction to distributed architectures

Scikit-learn tools for machine learning architectures

Pipelines

Feature unions

Summary

Other Books You May Enjoy

Index