葛氏皇朝经世文续编 - 卷六 学术六 文学二附算学

作者: 葛士浚27,098】字 目 录

六四 以借用本数之对数

四三四二九四二六四七五六二 除之得

五二八七八五九二一二 借用率数

假如有对数一三六一七二七八三六一七五九二八七八四求其真数

法依前求得借用率数五二八七八五九二一二乃以借用本数首位单一下加十九空位得一为第一数正 次以借用本数减去单一得一为乘法以乘法乘第一数又以率数乘之得五二八七八五九二一二为第二数正 乘法乘第二数又以率数反减一得四七一二九一四一截用九位乘之二除之得一二四五九二九为第三数负 乘法乘第三数又以率数反减二得一四七截用三位乘之三除之得一为第四数正 乃诸正数得一五二八七八五九二一二一内减第三负数得一五二八七八四六五六一九二乃以前求借用率数时递减各对数之真数一三与一四与一二与一五与一四与一一与二累乘之得二二九九九九九九九九九九九九九九九八五八弃零进一得二三又以前求率数时曾减首位之一应升一位得二十三即所求之真数也

本数一一

乘法一一

第一数 一 降六位率数乘之得

 二 五二八七八五九二一二 降六位率数减一乘之二除之得

 三 一二四五九二九 降六位率数减二乘之三除之得

 四 一

本数 一五二八七八五九二一二一

减得一五二八七八四六五六一九二 以一三乘之得

一三五二八七一五一七四四六 以一四乘之得

一四三五二八八五一二一四六七 以一二乘之得

一二四三五三七五五六九七三八六七 以一五乘之得

一五二四四七五五二四四七五五二四四八 以一四乘之得

一四五四五四五四五四五四五四五四四八一 以一一乘之得

一一四九九九九九九九九九九九九九九九二八 以二乘之得

二二九九九九九九九九九九九九九九九八二八 弃零进一升一位

 二三

按此即用求倍大各率第二术也其第三数变为负者凡整率必大于单一其减一减二皆为正减至率数减尽而止而无所为反减故逐数皆正今所用之率数小于单一其减一减二皆为反减反减则为负以为乘法故能变逐数皆正者为正负相间也又凡对数递减得三空位已可递求惟逐数用率数之乘法多位畸零不免繁重故须减至七空位然亦为求十八位对数之真数而设耳若求十一二位则一一即可借为本数而对数递减至四空位即可求借用率数矣

割圜连比例术图解序 

董佑诚

元郭守敬授时草用天元术求弧矢径一围三犹仍旧率西人以六宗三要二简术求八绵理密数繁凡遇布算皆资于表梅文穆公赤水遗珍载西士杜德美圜径求周诸术语焉不详罕通其故尝欲更创通法使弦矢与弧可以径求覃精累年迄无所得己卯春秀水朱先生鸿以杜氏九术全本相示盖海甯张先生豸冠所写者九术以外别无图说闻陈氏际新尝为之注为某氏所秘书已不传乃反覆寻绎究其立法之原盖即圜容十八觚之术引伸类长求其絫积实兼差分之列衰商功之堆垛而会通以尽句股之变周髀经曰圜出于方方出于矩矩出于九九八十一圜弧也方弦矢也九九八十一递加递减递乘递除之差也方圆者天地之大体奇耦相生出于自然今得此术而方圜之率通矣爰分图着解冠以九术原文并立弦矢亘求四术都为三卷辞取易明有伤芜冗其所未寤俟有道正焉

割圜连比例后序 

董佑诚

割圜解既成之二年朱先生复得割圜密率捷法四卷于钟祥李氏盖干隆初钦天监监正明图所解而门人陈际新所续成者其书释连比例诸率分弦矢为二术皆先设百分千分万分诸弧如本法乘除之弃其畸零以求合于矢之十二三十五十六弦之二十四八十百六十八诸数遂为递加一数以为除法者特取其易知而便于记忆则其于立法之原似未尽也然反覆推衍使弧矢奇耦率可互通钓隐探赜杂而不越盖师弟相承积三十余年之久推其用心可谓勤且深矣陈氏序言圜径求周及弧求弦矢三术为杜德美氏所作余六术则明图氏补之与张先生所传互异又借弧借弦二术并见陈氏书中范氏所作其闇合欤余以垛积释比例而三角及方锥堆三乘以下旧无其术近读元朱世杰四元玉监菱草形段果垛叠藏诸问乃知递乘递除之术近古所有而远西之士尚能守其遗法有足珍者爰记之

少广缒凿 

夏鸾翔

 开平方捷术一

小初商为一借根 以一借根除本积得二借根 一二借根半之为三借根 以三借根除本积得四借根 三四借根半之得五借根 以五借根除本积得六借根 下皆如是求至借根小者渐大大者渐小与方根密合而止

 此术一四七十等借根恒微小于方根二三五六八九等借根恒微大于方根

 算例

 假如平积一百二十一求方根

 小初商一□○为一借根 一借根除本积得一□二一为二借根 一二借根半之得一□一五为三借根 三借根除本积得一□○九五零多则弃之以便算凡借根借积皆然为四借根 三四借根半之得一□一为五借根因前借根弃零故五借根适合方根即方根

开平方捷术二

大初商为一借根 以一借根除本积得二借根 一二借根半之得三借根 以三借根除本积得四借根 三四借根半之得五借根 以五借根除本积得六借根 下皆如是求至借根大者渐小小者渐大与方根密合而止

 此术奇借根恒微大于本根隅借根恒微小于本根

 算例

 假如平积九十九求方根

 大初商一□○为一借根 一借根除本积得□九九为二借根 一二借根半之得□九九五为三借根 三借根除本积得□九九四九七四为四借根 三四借根半之得□九九四九八七此已消尽六位故六位下弃之也为五借根即方根

开诸乘方捷术一

小初商为一借根 以略大于本积之积为外积其根为外根以外积与外根加一之积相减又减一为递次除法 一借积减本积余以除法除之得数加一借根为二借根 二借积减本积余以除法除之得数加二借根为三借根 下皆如是求至借根渐大与方根密合而止或置外根降一乘积本乘乘数加一乘之为递次除法更捷

 算例

 假如平积五十求方根

 以□七一之平积五□○四一为外积□七一为外根求得一□四二为递次除法 小初商□七为一借根 一借积四□九减本积余以除法除之得□○七四以加一借根得□七七四为二借根 二借积四□九九九五五六减本积余以除法除之得□○六六五以加二借根得□七七一六五为三借根截去末二位得□七七一即方根

开诸乘方捷术二

大初商为一借根 以略大于本积之积为外积其根为外根以外积与外根加一之积相减又减一为递次除法 一借积内减本积余以除法除之得数减一借根为二借根 二借积内减本积余以除法除之得数减二借根为三借根 下皆如是求至借根渐小与方根密合而止

 算例

 假如平积八八求方根

 以□三之平积□九为外积□三为外根求得□六为递次除法 大初商□三为一借根 一借积□九内减本积余以除法除之得□○三三三三三以减一借根余□二九六六六为二借根 二借积□八八七一五五内减本积余以除法除之得□○一一九以减二借根余□二九六六四八一为三借根截去末二位得□二九六六四即方根

开诸乘方捷术三

小初商为一借根 以略小于本积之积为内积其根为内根以内积与内根加一之积相减又减一为递次除法 一借积减本积余以除法除之得数加一借根为二借根 二借积内减本积余以除法除之得数减二借根以下逐数皆一加一减相间为三借根 下皆如是求至借根小者渐大大者渐小与方根密合而止

 算例

 假如平积五十求方根

 以□七之平积四□九为内积□七为内根求得一□四为递次除法 小初商□七为一借根 一借积四九减本积余以除法除之得□○七一四以加一借根得□七七一四为二借根 二借积五□○四六九七内减本积余以除法除之得□○三三五以减二借根得□七七一六为三借根截去末一位得□七七一即方根

开诸乘方捷术四

大初商为一借根 以略小于本积之积为内积其根为内根以内积与内根加一之积相减又减一为递次除法 一借积内减本积余以除法除之得数减一借根为二借根 二借积减本积余以除法除之得数加二借根为三借根以下逐数皆一减一加相间 下皆如是求至借根大者渐小小者渐大与方根密合而止

 算例

 假如平积八八求方根

 以□二九之平积□八四一为内积□二九为内根求得□五八为除法 大初商□三为一借根 一借积□九内减本积余以除法除之得□○三四四八二七以减一借根余□二九六五五为二借根 二借积□八七九四一九减本积余以除法除之得□○一一七二以加二借根得□二九六六五为三借根 三借积□八八一二二二内减本积余以除法除之得□○二一以减三借根得□二九六六四七为四借根截去末一位得□二九六六四即方根

天元开诸乘方捷术一较数余积用此术

小初商为一借根 以略大于本积之积为外积其根为外根以外积与外根加一之积相减又减一为递次除法 一借积凡天元借根求借积法以借根乘隅加减长廉以借根乘之加减平廉又以借根乘之加减立廉又以借根乘之至加减方后又以借根乘之即借积也外根之于外积亦然减本积余以除法除之得数加一借根为二借根 二借积减本积余以除法除之得数加二借根为三借根 下皆如是求至借根渐大与元数密合而止

 算例

 假如平方负积十六正方二正隅一求元数

 以□三二之积一□六六四为外积□三二为外根求得□八四为递次除法 小初商□三为一借根 一借积一五□五减本积余以除法除之得□○一一九以加一借根得□三一一九为二借根 二借积一□五九六六一六一减本积余以除法除之得□○四二八以加二借根得□三一二三为三借根 三借积一□五九九九一二九减本积余以除法除之得□○一三以加三借根得□三一二三一三为四借根截去末三位得□三一二三即元数

天元开诸乘方捷术二和数余积用此术

小初商为一借根 以略大于本积之积为外积其根为外根以外积与外根加一之积相减又加一为递次除法 一借积减本积余以除法除之得数加一借根为二借根 二借积内减本积余以除法除之得数减二借根为三借根以后逐数皆一加一减相间 下皆如是求至借根小者渐大大者渐小与元数密合而止

 算例

 假如平方负积二九正方四负隅一求小元数

 以□一之积□三为外积□一为外根求得□二为递次除法 小初商□○九为一借根 一借积□二七九减本积余以除法除之得□○五五以加一借根得□○九五五为二借根 二借积□二九七九七五内减本积余以除法除之得□○三九八七以减二借根余□○九五一一为三借根 三借积□二八九九六一九九减本积余以除法除之得□○一九五以加三借根得□○九五一二为四借根 四借积□二九一八五六内减本积余以除法除之得□○九二八以减四借根得□○九五一一九为五借根截去末一位得□○九五一一九即小元数

天元开诸乘方捷术三益积用此术

大初商为一借根 以略大于本积之积为外积其根为外根以外积与外根加一之积相减又减一为递次除法 一借积内减本积余以除法除之得数减一借根为二借根 二借积内减本积余以除法除之得数减二借根为三借根 下皆如是求至借根渐小与元数密合而止

 算例

 假如平方负积一百六十八负方二十二正隅一求元数

 以三□○之积二四□○为外积三□○为外根求得三□八为递次除法 大初商三□○为一借根 一借积二四□○内减本积余以除法除之得□一八九四七三以减一借根余二□八一五为二借根 二借积一七□一五八一内减本积余以除法除之得□○九四二三以减二借根余二□八一为三借根 三借积一六□八三四内减本积余以除法除 之得□○八九四以减三借根余二□八一为四借根 四借积一六□八三内减本积余以除法除之得□○七八九以减四借根余二□八一为五借根弃零得二□八即元数

天元开诸乘方捷术四翻积用此术

小初商为一借根 以略大于本积之积为外积其根为外根以外积与外根减一之积相减又加一为递次除法 一借积内减本积余以

打 印】 【来源:读书之家-dushuzhijia.com】