测圆海镜分类释术 - 测圆海镜分类释术

作者:【暂缺】 【59,552】字 目 录

以乘从二廉得三千○六十七万七千九百二十八为减廉 置一乘上廉得一百二十一万六千八百 置一自之以乘下廉得三万七千四百四十置一自乘再乘以隅因得四百三十二为隅法并方廉隅共一千八百八十三万○六百七十

二为减隅 减廉减隅相和得四千九百五十○万八千六百为减从倍初次加三商得二百六十六以乘从一廉得四千九百一十九万九千三百六十为益从 以加原从得一亿○二百六十五万二千八百 以减从减之余五千三百一十四万四千二百为下法 与上法相乘除实尽此法以第一廉为益从第二廉与隅为减从以从为法

后凡如此类者俱仿此

圆城南门外往东有树甲从城外西北隅东行三百二十步望树与城叅直复斜行二百七十二步至树下问城径

释曰此以通勾黄长立法测望南门外往东七十二步有树明勾也甲东行通勾也斜行至树下地之月黄长也

术曰二行相减余四十八为差 倍差倍东行相乘得六万一千四百四十为实 倍差倍东行步相并得七百三十六为益从 二为隅法 作负隅减从翻法开平方法除之得全径

负隅减从翻法开平方法见三卷通勾□股条下前以半径此以全径推广即是

丙出南门东行乙出东门南行各不知步数而立甲从城外西北干隅东行三百二十步望乙丙俱与城相叅直既而乙欲就丙乃斜行一百○二步相防问城径

释曰此以通勾太虚立法测望丙出南门东行七十二为明勾乙出东门南行三十步为□股甲东行通勾也乙斜行太虚也以此勾立法

术曰甲东行自之得一十○万二千四百为东行筭倍斜行乘之得二千○八十八万九千六百为立

方实 倍斜行乘东行得数又加倍东行筭得二十七万○○八十为从方四之东行得一千二百八十为益廉 四为隅法 作带从负隅以廉添积开立方法除之得半径

带从负隅以廉添积开立方曰置所得立方实于左 以从方益廉隅筭约之 初商一百 置一于左上为法 置一乘益廉得一十二万八千与上法相乘得一千二百八十万为益实 添入积内得三千三百六十八万九千六百为通实 置一自之又以隅筭因之得四万为隅法 并从方共三十一万○○八十为下法与上法相乘除实三千一百○○万八千余实二百六十八万一千六百为次实 二因乘过益廉得二十五万六千为益廉 三因隅法得一十二万为方法 三因初商得三百为廉法 次商二十 置一于左上为法 置一乘原益廉得二万五千六百并入乘过益廉得二十八万一千六百与上法相乘得五百六十三万二千为益实 添入次实共八百三十一万三千六百为通实 置一乘廉法得六千隅因得二万四千 置一自之隅因得一千六百为隅法 并方廉隅共一十四万五千六百带从方共四十一万五千六百八十为下法与上法相乘除实尽

后凡言带从负隅以廉添积开立方法俱仿此

又为带从廉半翻法减从负隅开立方法

法曰初商一百 置一于左上为法 置一乘从廉得一十二万八千以减从方余一十四万二千○八十 置一自之隅因得四万为隅法并减余从方共一十八万二千○八十为下法与上法相乘除实一千八百二十○万八千余实二百六十八万一千六百为次商之实 二因从廉得二十五万六千 三因隅法得一十二万为方法 三因初商得三百为廉法 约次商得二十 置一于左次为上法 置一乘从廉得二万五千六百并入前二因从廉得二十八万一千六百 以减从方不及反减从方二十七万○○八十余一万一千五百二十为负从 置一乘廉法以隅因得二万四千 置一自之隅因得一千六百为隅法并方廉隅共一十四万五千六百反减负从余一十三万四千○八十为下法与上法相乘除实尽后凡如此类者俱仿此

又术曰斜行乘东行筭半之得五百二十二万二千四百为实 斜行乘东行如东行筭半之得六万七千五百二十为从方 东行三百二十为从廉如前法求之得半径

不用隅算 添积减从随意

又曰四之斜行以乘东行筭得四千一百七十七万九千二百为正实 倍斜行乘东行加二之东行筭得二十七万○○八十为从方 倍东行得六百四十为从廉 如前法开之得全径二百四十 添积减从俱同

乙出城东门上南不知步数而立甲从城外西北干隅东行三百二十步望乙与城相叅直复斜行一百七十步与乙相防问城径

释曰此以通勾小差立法测望甲东行通勾也斜行小差也

术曰二行相减余一百五十为差自之得二万二千五百以乘东行得七百二十万为实 倍差以乘东行得九万六千为从方 倍差得三百为隅算 作负隅减从开平方法除之得半径

负隅减从开平方法见二卷【通勾□勾条】

又术倍东行筭得二十三万四千八百 倍二行相乘数得一十○万八千八百 相减余九万六千为实 倍东行得六百四十为从作减从开平方法除之得全径二百四十

减从开平方法曰列实于左从于右 约初商得二百置一于左上为法 置一为隅法以减从方余四百四十为下法与上法相乘除实八万八千余八千为次商之实余从内再减二百余二百四十为从 次商四十 置一于左上为法 置一为隅法以减从方余二百为下法与上法相乘除实尽

法见二卷底勾□勾条下因从有重位故重出

圆城南门外直南不知步数有槐树一株南门外东行不知步数有栁树一株槐栁斜相距一百五十三步甲从城外西北隅东行三百二十步望槐栁与城相叅直问城径

释曰此以通勾明立法测望二树斜相距明也甲东行通勾也

术曰通勾自之得一十○万二千四百为通勾筭二行相乘得四万八千九百六十 又以二数相乘得五十○亿一千三百五十○万四千为三乘方实明乘通勾筭三之得四千七百○○万一千六百为从方 倍二行相乘数以减通勾筭余四千四百八十为第一廉 倍通勾得六百四十为第二益廉二步为隅法 作带从负隅以二廉减从方开三乘方法除之得半径

带上廉负隅以下廉减从开三乘方法曰置所得三乘方实以防隅从方约之初商一百 置一于左上为法 置一自之以乘从二廉得六百四十万为减廉以减从方 余四千○六十○万一千六百为从方 置一乘第一廉得四十四万八千为益廉 置一自乘再乘得一百万又以隅因之得二百万为隅法 并从方益廉隅法共四千三百○四万九千六百为下法与上法相乘除实四十三亿○四百九十六万 余实七亿○八百五十四万四千为次商之实 四因隅法得八百万为方法 初商自之六因又以隅法因之得一十二万为上廉 初商四之隅因得八百为下廉 约次商得二十 置一于左上为法 倍初商加次商得二百二十以乘从二廉得一十四万○八百并初次商得一百二十因之得一千六百八十九万六千为减廉 以减余从余二千三百七十○万五千六百为从方 倍初商加次商得二百二十以乘第一廉得九十八万五千六百为益廉置一乘上廉得二百四十万 置一自之以乘下廉得三十二万 置一自乘再乘又以隅因之得一万六千为隅法 并方法从方廉益上下廉隅法共三千五百四十二万七千二百为下法与上法相乘除实尽

丙出东门南行乙出东门直行各不知步数而立甲从城外西北干隅东行三百二十步回望乙丙与城相叅直既而乙欲就丙乃斜行三十四步相防问城径释曰此以通勾□立法测望甲东行通勾也乙斜行三十四步就丙□也

术曰通勾自之得一十○万二千四百为通勾筭又以通勾増乘得三千二百七十六万八千 倍□乘通勾筭得六百九十六万三千二百 二数相减余二千五百八十○万四千八百为立方实 □乘通勾得一万○八百八十以减二之通勾筭得一十九万三千九百二十为从方 通勾加五得四百八十为益廉 五分为隅法 作带从负隅以廉添积开立方法除之得全径

带从负隅以廉添积开立方曰置所得立方实及从方益廉 约初商得二百 置一于左上为法置一乘益廉得九万六千与上法相乘得一千

九百二十万为益实添入积内得四千五百○○万四千八百为实 置一自之得四万 以隅算五分因之得二万为隅法 并从方共二十一万三千九百二十为下法与上法相乘除实四千二百七十八万四千余实二百二十二万○八百倍益廉得一十九万二千○三因隅法得六万为方法 三因初商得六百以隅因得三百为廉法约商次位得四十 置一于左上为法 置一

乘原益廉得一万九千二百 并入倍廉得二十一万一千二百与上法四十相乘得八百四十四万八千为益实加入余实得一千○六十六万八千八百为实 置一乘廉法得一万二千 置一自之隅因得八百为隅法 并方法从方廉隅共二十六万六千七百二十为下法与上法相乘除实尽

此法已见前通勾太虚条下因隅不同故又重出

又为带从以廉减从负隅开立方法

其法曰初商二百 置一于左上为法 置一乘从廉得九万六千以减从方余九万七千九百二十为从 置一自之隅因得二万为隅法 并从方共一十一万七千九百二十为下法与上法相乘除实二千三百五十八万四千 余实二百二十二万○八百 从方内再减从廉九万六千余一千九百二十为从方 三因隅法得六万为方法 三因初商隅因得三百为廉法 次商四十 置一于左上为法 置一乘从廉得一万九千二百 以减余从不及减于从廉内反减余从一千九百二十余一万七千二百八十为负从置一乘廉法得一万二千 置一自之隅因得八百为隅法并方廉隅共七万二千八百反减负从余五万五千五百二十为下法与上法相乘除实尽

又术斜步乘东行筭得三百四十八万一千六百为立方实斜步乘东行以减半东行筭得四万○三百二十为从方 半步为隅法 作负隅带从开立方法除之得勾圆差八十步以减通勾即半径

负隅带从开立方法见三卷【通勾明股条】

东门外不知步数有树甲从城外西北干隅东行三百二十步见之复斜行一百三十六步至树下问城径释曰此以通勾下平立法测望甲东行通勾也斜行至树下乃川之地下平也

术曰二行相减余一百八十四为差 倍差减东行以其余乘东行得一万五千三百六十为实 倍差得三百六十八为从方 二为隅法作减从负隅翻法开平方法除之得半径

减从负隅翻法开平方见三卷【通勾□股条下】

底勾与别测望二

乙从城外西北干隅南行不知步数而立甲出北门东行二百步见之复斜行六百八十步与乙防

释曰此以底勾通测望甲出北门东行二百步底勾也斜行六百八十步通也

术曰二行相减余四百八十曰差 相并得八百八十曰和 差和相乘得四十二万二千四百减去差筭余一十九万二千为实 差和相并得一千三百六十为从 二为隅 作带从负隅开平方除之得半径

带从负隅开平方法曰置实于左从于右约初商得一百 置一于左上为法 置一乘隅算得二百为隅法 并从方共一千五百六十为下法与上法相乘除实一十五万六千余实三万六千倍隅法得四百为廉法 约次商二十 置一于左上为法置一乘隅算得四十为隅法 并从方廉隅共一千八百为下法与上法相乘除实尽后凡言带从负隅开平方法者俱仿此

又术以差筭二十三万○四百为实以东行步减差余二百八十为从方 作带从开平方法除之得三百六十为通勾较以较减即通勾以通勾求容圆法求之得城径

此法以半勾全求股以求和较

勾求容圆见一卷

南门外不知步数有塔一座东门外往南不知步数有树甲出北门东行二百步望树与塔俱与城相叅直及量树斜距塔二百五十五步

释曰此以底勾下高立法测望出北门东行二百底勾也塔距树即日之山下高也

术曰底勾筭与下高相乘得一千○二十万为立方实 以底勾筭四万为从方 高为从廉 作带从方廉开立方法除之得半径

带从方廉开立方曰置实于左以从方从廉约之初商一百 置一于左上为法 置一乘从廉

得二万五千五百 置一自之得一万为隅法并从方从廉隅共七万五千五百为下法与上法相乘除实七百五十五万 余实二百六十五万二因从廉得五万一千 三因隅法得三万

相并得八万一千为方法 三因初商得三百带从廉得五百五十五为廉法 次商二十 置一于左上为法 置一乘廉法得一万一千一百置一自之得四百为隅法 并方法从方廉隅共一十三万二千五百为下法与上法相乘除实尽后凡言带从方廉开立方法者俱仿此

南门外不知步数有树乙从南门东行亦不知步数而立甲出北门东行二百步望树与乙与城相叅乙复斜行一百五十三步至树下与甲相望问城径释曰此以底勾明立法测望甲出北门东行底

打 印】 【来源:读书之家-dushuzhijia.com】