| 作 者: | 李永乐 王式安 |
| 出版社: | 国家行政学院出版社 |
| 丛编项: | 金榜图书·2014李永乐王式安考研数学系列 |
| 版权说明: | 本书为出版图书,暂不支持在线阅读,请支持正版图书 |
| 标 签: | 考试 考研 考研数学 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
第一篇 高等数学
第一章 函数极限连续
考点与要求
1 函数
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、求分段函数的复合函数
二、由函数的奇偶性与周期性构造函数
三、求反函数的表达式
四、关于函数有界(无界)的讨论
2 极限
内容精讲
一、定义
二、重要性质、定理、公式
三、计算极限的一些有关方法
例题分析
一、求函数的极限
二、已知极限值求其中的某些参数,或已知极
限求另一与此有关的某极限
四、无穷小的比较
五、数列的极限
六、极限运算定理的正确运用
3 函数的连续与间断
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、讨论函数的连续与间断
二、在连续条件下求参数
三、连续函数的零点问题
自测题
自测题答案与提示
第二章 一元函数微分学
考点与要求
1 导数与微分,导数的计算
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、按定义求一点处的导数
二、已知,(z)在某点z-z。处可导,求与此有关的某极限或其中某参数,或已知某极限求F(x)在z-z。处的导数
三、绝对值函数的导数
四、由极限式表示的函数的可导性
五、导数与微分、增量的关系
六、求导数的计算题
2 导数的应用
内容精讲
一、定义
二、重要性质、定理、公式与方法
例题分析
一、增减性、极值、凹凸性、拐点的讨论
二、渐近线
三、曲率与曲率圆
四、最大值、最小值问题
3 中值定理、不等式与零点问题
内容精讲
一、重要定理
二、重要方法
例题分析
一、不等式的证明
二、f(x)的零点与f’(x)的零点问题
三、复合函数(x,f(z),f’(x))的零点
四、复合函数φ(x,(x),f’(x),f”(z))的零点
五、“双中值”问题
六、零点的个数问题
七、证明存在某满足某不等式
八、f’(x)与f(x)的一些极限性质的关系
自测题
自测题答案与提示
第三章 一元函数积分学
考点与要求
1 不定积分与定积分的概念、性质、理论
内容精讲
一、定义
二、重要性质、定理、公式
例题分析
一、分段函数的不定积分与定积分
二、定积分与原函数的存在性
三、奇、偶函数、周期函数的原函数及变限积分
2 不定积分与定积分的计算
内容精讲
一、基本积分公式
二、基本积分方法
例题分析
一、简单有理分式的积分
二、三角函数的有理分式的积分
三、简单无理式的积分
四、两种不同类型的函数相乘的积分
五、被积函数中含有导数或变限函数的积分
六、对称区间上的定积分,周期函数的定积分
七、含参变量带绝对值号的定积分
3 反常积分及其计算
内容精讲
一、定义
二、重要性质、定理、公式例题分析
一、反常积分的计算
二、关于奇、偶函数的反常积分
三、关于反常积分敛散性的判定
4 定积分的应用
内容精讲
一、基本方法
二、重要几何公式与物理应用例题分析
一、几何应用
二、物理应用
5 定积分的证明题
内容精讲
例题分析
一、讨论变限积分所定义的函数的奇偶性、周期
性、极值、单调性等
二、由积分定义的函数求极限
三、积分不等式的证明
四、零点问题
自测题
自测题答案与提示
第四章 多元函数微积分学
考点与要求
1 多元函数的极限、连续、偏导数与全微分
内容精讲
一、多元函数
二、二元函数的极限与连续
三、二元函数的偏导数与全微分
例题分析
一、讨论二重极限
二、讨论二元函数的连续性、偏导数存在性
三、讨论二元函数的可微性
2 多元函数的微分法
内容精讲
一、复合函数的偏导数与全微分
二、隐函数的偏导数与全微分
例题分析
一、求复合函数的偏导数与全微分
二、求隐函数的偏导数与全微分
3 极值与最值
内容精讲
……
第五章 常微分方程
第二篇 线性代数
第一章 行列式
第二章 矩阵
第三章 向量
第四章 线性方程组
第五章 特征值、特征向量、相似矩阵
第六章 二次型