| 作 者: | 大卫·B·马尔门特 |
| 出版社: | 世界图书出版公司 |
| 丛编项: | |
| 版权说明: | 本书为出版图书,暂不支持在线阅读,请支持正版图书 |
| 标 签: | 暂缺 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
Chapter 1. Differential Geometry
1.1 Manifolds
1.2 Tangent Vectors
1.3 Vector Fields, Integral Curves, and Flows
1.4 Tensors and Tensor Fields on Manifolds
1.5 The Action of Smooth Maps on Tensor Fields
1.6 Lie Derivatives
1.7 Derivative Operators and Geodesics
1.8 Curvature
1.9 Metrics
1.10 Hypersurfaces
1.11 Volume Elements
Chapter 2. Classical Relativity Theory
2.1 Relativistic Spacetimes
2.2 Temporal Orientation and "Causal Connectibility"
2.3 Proper Time
2.4 Space/Time Decomposition at a Point and Particle Dynamics
2.5 The Energy-Momentum Field Tab
2.6 Electromagnetic Fields
2.7 Einsteins Equation
2.8 Fluid Flow
2.9 Killing Fields and Conserved Quantities
2.10 The Initial Value Formulation
2.11 Friedmann Spacetimes
Chapter 3. Special Topics
3.1 Gödel Spacetime
3.2 Two Criteria of Orbital (Non-)Rotation
3.3 A No-Go Theorem about Orbital (Non-)Rotation
Chapter 4. Newtonian Gravitation Theory
4.1 Classical Spacetimes
4.2 Geometrized Newtonian Theory—First Version
4.3 Interpreting the Curvature Conditions
4.4 A Solution to an Old Problem about Newtonian Cosmology
4.5 Geometrized Newtonian Theory—Second Version