同文算指 - 同文算指

作者:【暂缺】 【97,581】字 目 录

得一十零四之一为乙实乃列乙实于左图初借立一之次既已得乙实即得丙实【乙丙共三十七也乙得一十零四之一则丙得二十六零四之三】列于又次

又另借三为甲衰列右上加七十三【共七十六】以其半为乙丙衰【得三十八】而随意分之为两另作一法如前焉如以二为乙衰列左上其余三十六乃丙衰列左次即以乙衰之二加其七十三【得七十五】与甲丙相较是三之二否不足四

十二【甲三丙三十六共三】

【十九其三分之二乃一百十七】

【也今乙衰加之只七十五】即

以不足列左下

另借二十三为乙衰列右上其半十五为丙衰列右次以乙衰二十三加七十三【得九十六】与甲丙相较是三之二否又盈四十二【甲三丙十五共十八其三分之二当是五十四今乙衰之数与加数却有九十六】以盈列右下盈与不足相并为法仍以左上乘右下以右上乘左下而相并为实以法除实得一十二零二分之一为乙实乃列乙实于前所借甲三之次因得丙实【乙丙共三十八乙既得一十二又二分之一则丙得二十五零二分之一】亦列于又次俱照前式

乃依所问察之甲加七十三要兼乙丙数又多一倍乙加七十三要得甲丙数者三丙加七十三要得甲乙数者四

如右图左上甲衰及所加【共七十四】已兼乙丙之数与其倍数【乙丙共三十七兼而倍之则七十四也】左次乙衰所加【共八十三又四之一】亦兼甲丙数之三【甲丙共二十七又四之三以加二倍合乙衰】俱合原问惟左又次丙衰及所加【共九十九零四之三】以合甲乙【共十一零四之一】如原问但欲得甲乙数者四只须四十五今却九十九零四之三乃盈五十四零四之三到此不合矣仍依互乘之法求之右上甲衰及所加【共七十六】亦合乙丙兼数与倍数【乙丙共三十八兼倍之则七十六也】右次乙衰及所加【共八十五半】合甲丙亦具三因【甲丙共二十八半三因之得八十五半】惟右又次之丙衰及所加【共九十八零半】以合甲乙【共十五又二之一】以四因之当得六十二今却九十八零二之一乃盈三十二零二之一也不合原问仍依互乘之法求之 于是以左上甲衰乘右下以右上甲衰乘左下相减余为实以左下右下相减余为法除之得七为甲衰如欲得乙衰则以乙之左右上下互乘相减以法除之得一十七为乙衰如欲得丙衰亦以丙之左右上下互乘减除得二十三为丙衰

问设有一数以与三相乘外加一十又以此乘四外加二十又乘五外加三十又乘六外加四十即共得六千七百此其原设数防何其法先借二为主列左上以乘三【得六】外加十【共十六】又与四相乘【六十四】加二十【共八十四】又与五相乘【四百二十】加三十【共四百五十】又与六相乘【二千七百】加四十【共二千七百四十】以此所问数【六千七百】不足三千九百六十列左下次借三列右上以乘三【九】外加十【共十九】又乘四【七十六】外加二十【共九十六】又乘五【四百八十】外加三十【五百一十】又乘六【三千六十】外加四十【共三千一百】以比所问数【六千七百】不足三千六百列右下两不足相减余为法除之得一十三系原设

右法已除得十三者与三相乘【三十九】加一十【四十九】又与四相乘【一百九十六】加二十【共二百一十六】以乘五【一千八十】加三十【共一千一百一十】以乘六【六千六百六十】加四十实得六千七百合问问二人共分银一百两不得其均若均分则每人当五十两然须甲还所得银三之一乙又还所得银五之一方得每人五十两其不均之分各得若干先借三十两为甲衰列左上亦列乙衰七十于次乃减甲三之一【减一十存二十】亦减乙五之一【一十四】而以乙减归甲【甲二十加乙十四共三十四】以比五十不足一十六列左下另借六十为甲衰列右上亦列乙衰四十于其次乃减甲三之一【减二十存四十】亦减乙五之一【八】而以乙减归甲【甲四十加乙八共四十八】不足二列右下两不足相减余为法以左上乘右下以右上乘左下相减余为实以法除实得六十四两零七分两之二为甲衰就一百两内减甲衰余三十五两又七分两之五为乙衰合原分不均

之数

问二人共分银一百两未得其均须甲损所得三之一乙亦捐所得四之一和合平分乃各得五十两其未均之数各若干先借六十为甲衰列左上亦列乙四十于左次乃减甲三之一【减二十存四十】减乙四之一【减一十存三十】和所减【甲二十乙一十共三十】而均分之【各得十五】以甲所得十五合减存四十之数【甲原存四十加十五得五十五】以比五十盈五数列左下另借二十四为甲衰列右上亦列乙衰七十六于右次乃减甲三之一【减八存一十六】减乙四之一【减一十九】和所减【甲八乙一十九共二十七】而均分之【各得十三零二之一】以甲所得一十三半之数合减存一十六数【共二十九半】以比五十不足二十半列右下盈不足相并为法右上乘左下左上乘右下相并为实以法除实得五十二两零十七分两之一十六为甲衰其余四十七

两又十七分

两之一为乙衰

问以一千剖为二甲多于乙四十九作何剖之其法借六百为甲衰列左上亦列乙四百于次相较差二百以比四十九则盈一百五十一列左下另借五百五十为甲衰列右上亦列乙四百五十于次相较差一百以比四十九则盈五十一列右下两盈相减余为法以左上

打 印】 【来源:读书之家-dushuzhijia.com】