| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
章概论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 结构力学定性理论的发展简史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 结构力学定性理论的研究内容. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 主要理论结果及其论证方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 结构力学中定性理论的理论和应用意义. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 杆的振动的定性性质要览. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 梁的振动的定性性质要览. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 重复性结构的振动和静变形的定性性质要览. . . . . . . . . . . . . . . . . . . . . 16
1.8 一般结构的模态的三项定性性质要览. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 弹性力学和结构理论中解的存在性等基础理论要览. . . . . . . . . . . . . . 20
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
第二章振荡矩阵和振荡核及其特征对的性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 若干符号和定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 有关子式的一些关系式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Jacobi 矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.4 振荡矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Perron 定理和复合矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 振荡矩阵的特征对. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 具有对称核的积分方程和振荡核. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 积分方程的Perron 定理和复合核. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 具有振荡核的积分方程的特征对. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.10 静变形的振荡性质、柔度函数(柔度矩阵) 为振荡核(振荡矩阵)、
振动的振荡性质三者的关系· · · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.11 从振荡矩阵到振荡核. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
第三章弦、杆的离散系统的振动和静变形的定性性质. . . . . . . . . . . . . . . . . . . 74
3.1 弦和杆的离散系统. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 弹簧?C质点系统的振动和静变形的基本定性性质. . . . . . . . . . . . . . . . . .80
3.3 弹簧?C质点系统的振型的充要条件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 杆的差分离散系统的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 杆的有限元离散系统的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . .94
3.6 无质量弹性杆?C质点系统的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . 99
3.7 具有弹性基础的弦和杆的离散系统的模态的定性性质. . . . . . . . . . . 101
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
第四章梁的离散系统的振动和静变形的定性性质. . . . . . . . . . . . . . . . . . . . . . . 102
4.1 梁的差分离散模型和相应的物理模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 充分约束梁的差分离散模型的振动和静变形的定性性质. . . . . . . . .108
4.3 约束不足梁的差分离散系统的模态的定性性质. . . . . . . . . . . . . . . . . .111
4.4 梁的差分离散系统的各种振型的变号数. . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 由模态构造梁的差分离散系统独立模态的个数. . . . . . . . . . . . . . . 122
4.6 不同支承梁的差分离散系统的固有频率的相间性. . . . . . . . . . . . . . . 128
4.7 梁的有限元离散系统的振荡性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.8 多跨梁的离散系统的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.9 外伸梁的离散系统的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
第五章Sturm-Liouville 系统的振动和静变形的定性性质. . . . . . . . . . . . . 157
5.1 Sturm-Liouville 系统的固有振动. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.2 Sturm-Liouville 系统的Green 函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3 Sturm-Liouville 系统的振动和静变形的振荡性质. . . . . . . . . . . . . . . 165
5.4 杆的独立模态的个数及振型的进一步性质. . . . . . . . . . . . . . . . . . . . . . 169
5.5 不同边界支承的杆的固有频率的相间性. . . . . . . . . . . . . . . . . . . . . . . . 181
5.6 离散系统与连续系统的比较. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
第六章梁的振动和静变形的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.1 梁的运动微分方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.2 梁的Green 函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
6.3 充分约束梁的静变形和振动的振荡性质. . . . . . . . . . . . . . . . . . . . . . . . 195
6.4 约束不足梁的振动和静变形的振荡性质. . . . . . . . . . . . . . . . . . . . . . . . 201
6.5 由模态构造梁梁的独立模态的个数. . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6 梁的固有频率的其他性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.7 外伸梁的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.8 轴向受拉梁的横向振动的振荡性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
第七章重复性结构的振动与静变形的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . 242
7.1 对称结构的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.2 旋转周期结构的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.3 线周期结构的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
7.4 链式结构的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.5 轴对称结构的模态的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
7.6 重复性结构的强迫振动. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.7 重复性结构的振动控制和形状控制的降维方法. . . . . . . . . . . . . . . . . .278
7.8 重复性结构的静变形的定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
第八章一般结构的模态的三项定性性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.1 结构参数改变对固有频率的影响. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.2 模态对结构参数改变的敏感性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294
8.3 振型的节的一些性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
第九章结构力学中解的存在性理论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
9.2 结构理论中三类问题的变分解法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.3 泛函极值解的存在性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322
9.4 弹性力学中静变形解和模态解的存在性. . . . . . . . . . . . . . . . . . . . . . . . 330
9.5 结构理论中静变形解和模态解的存在性. . . . . . . . . . . . . . . . . . . . . . . . 333
9.6 结构理论模型的合理性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.7 Ritz 法在结构理论求解中的收敛性. . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365