弹性力学(第2版 英文版)

弹性力学(第2版 英文版)
作 者: 伍章健 武海军 韩峰
出版社: 北京理工大学出版社
丛编项:
版权说明: 本书为出版图书,暂不支持在线阅读,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《弹性力学(第2版 英文版)》作者简介

内容简介

《弹性力学(第2版 英文版)》主要介绍弹性力学经典内容和作者zui新研究成果,整个结构体系综合了北京理工大学和英国曼彻斯特大学多年来在弹性力学教学中的大纲、内容和成果,为适应当前高等教育对双语教学的发展需求,本书内容的安排和撰写参考了经典著作和zui新教研成果,并结合了读者对第一版的反馈以及在弹性力学教学方面zui新收获。为了更好地适应读者在双语教学环境下使用以及促进数值模拟和工程计算在弹性力学中的应用,与第一版不同的是在第二版中增加了有限差分法和有限元法内容。通过使用和阅读本书,结合中文教材能够学到弹性力学的基础知识、标准术语,提高专业英语能力、本书可作为工科类高等学校,尤其是力学类的高年级本科生和研究生双语课程和教学参考书,或者作为工程师、研究人员和初学者的英文参考书。

图书目录

CHAPTER 1 BASIC ASSUMPTIONS AND MATHEMATICAL

PRELIMINARIES

1.1 Introduction

1.2 Basic Assumptions

1.3 Coordinate Systems and Transformations

1.4 Vector and Matrix Notations and Their Operations

1.5 Divergence Theorem

Problems/Tutorial Questions

CHAPTER 2 STRESSES

2.1 Stress and the Stress Tensor

2.2 Equilibrium Equations

2.3 Traction Boundary Conditions

2.4 Stresses on an Oblique Plane

2.5 Principal Stresses

2.6 Stationary and Octahedral Shear Stresses

2.7 Equilibrium Equations in Curvilinear Coordinates

Problems/Tutorial Questions

CHAPTER 3 STRAINS

3.1 Strains

3.2 Finite Deformations

3.3 Strains in a Given Direction and Principal Strains

3.4 Stationary Shear Strains

3.5 Compatibility

3.6 Kinematic and Compatibility Equations in Curvilinear Coordinates

3.7 Concluding Remarks

Problems/Tutorial Questions

CHAPTER 4 FORMULATION OF ELASTICITY PROBLEMS

4.1 Strain Energy Density Function

4.2 Generalised Hooke's Law

4.3 Initial Stresses and Initial Strains

4.4 Governing Equations and Boundary Conditions

4.5 General Solution Techniques

4.6 St.Venant's Principle

Problems/Tutorial Questions

CHAPTER5 TWO-DIMENSIONAL ELASTICITY

5.1 Plane Strain Problems

5.2 Plane Stress Problems

5.3 Similarities and Differences Between Plane Strain/Plane Stress Problems

5.4 Airy Stress Function and Polynomial Solutions

5.5 Polar Coordinates

5.6 Axisymmetric Stress Distributions

5.7 Rotating Discs

5.8 Stresses Around a Circular Hole in a Plate Subjected to Equal Biaxial Tension-Compression (Pure Shear in the 45°Direction)

5.9 Stress Concentration Around a Circular Hole in a Plate Subjected to Uniaxial Tension

5.10 Concluding Remarks

Problems/Tutorial Questions

CHAPTER 6 TORSION OF BARS

6.1 Torsion of Bars in Strength of Materials

6.2 Warping

6.3 Prandtl's Stress Function

6.4 Torque

6.5 Bars of Circular and Elliptical Cross-Sections

6.6 Thin-Walled Structures in Torsion

6.7 Analogies

Problems/Tutorial Questions

CHAPTER 7 BENDING OF BARS

7.1 Bending Theory in Strength of Materials

7.2 Elasticity Formulation of Bending of Bars

7.3 Stress Resultants and Shear Centre

7.4 Bending of a Bar of a Circular Cross-Section

7.5 Bending of a Bar of an Elliptical Cross-Section

7.6 Analogies

Problems/Tutorial Questions

CHAPTER 8 THE STATE SPACE METHOD OF 3D ELASTICITY

8.1 Concept of State and State Variables

8.2 Solution for a Linear Time-Invariant System

8.3 Calculation ofe[A]t

8.4 Solution of Linear Time-Variant System

8.5 State Variable Equation of Elasticity

8.6 Application ofState Space Method

8.7 Conclusions

Problems/Tutorial Questions

CHAPTER9 BENDINGOFPLA7ES

9.1 Love.KirchhoffHypotheses

9.2 TheDisplacementFields

9.3 Strains and Generalised Strains

9.4 Bending Momems

9.5 The Governing Equation

9.6 GeneralisedForces

9.7 Boundary Conditions

9。8 RectangularPlates

9.9 CircularPlates

Problems/Tutorial Questions

CHAPTER 10 ENERGYPRINCIPLES

10.1 Introduction

10.2 Work,Strain Energy and Strain Complementary Energy

10.3 Principle ofVirtualWork

10.4 Application ofthe Principle ofVirtual Work

10.5 The Reciprocal Law ofBetti

10.6 Principle ofMinimum Potential Energy

10.7 Principle ofVirtual Complememary Work

10.8 Principle of Minimum Complementary Energy

10.9 Castigliano's Theorems

10.10 Application of the Principles of Minimum Strain Energy

10.11 Rayleigh-Ritz Method

Problems/Tutorial Questions

CHAPTER 11 FINITE DIFFERENCE METHOD

11.1 Finite Difference Formulations

11.2 Relations of Difference and Differential Operators

11.3 Difference Pattern for Laplace and Bi-harmonic Operators

11.4 Case Study

11.5 Boundary Condition for Plane Problem Bi-harmonic Function

11.6 Irregular Boundary and Uneven Mesh Intervals

Problems/Tutorial Questions

CHAPTER 12. FINTTE ELEMENT METHOD

12.1 Introduction

12.2 Outline of FEM

12.3 Formulation of Displacement Model

12.4 Triangular Element

12.5 Nodal Force Vector

12.6 Rectangular Element

12.7 Transformation Matrix and Assembly of Structure Stiffness Matrix ~

12.8 Other Remarks

Problems/Tutorial Questions

CHAPTER 13 SPECIAL TOPICS FOR ELASTICITY

13.1 Thermal Elasticity

13.2 Propagation of Elastic Wave

13.3 Strength Theory, Crack and Fracture

Problems/Tutorial Questions

References