○一七七三七五四段 一十七度四七八九七五○四
五段 二十○度八四三六六三○六六四○六二五六段 二十三度四三一三三六二四一二五
七段 二十五度○九二四三五二八三四六八七五八段 二十五度六一八三七四七二
泛平差
一段 二十九分七一三一二六九三七五
二段 二十九分八四五七七五二五
三段 二十九分五七八三五五○六二五
四段 二十八分六五四○六四
五段 二十七分三三三九五一五六二五
六段 二十五分六一八○一七七五
七段 二十三分五○六二六二五六二五
八段 二十○分九九八六八六
泛平较
一段 一十三秒二六四八三一二五
二段 二十六秒八四一八○八七五
三段 九十二秒四二九一○六二五
四段 一分三二○一一二四三七五
五段 一分七一五九三三八一二五
六段 二分一一一七五五一八七五
七段 二分五○七五七六五六二五
泛立较
一段 一十三秒五七六九七七五
二段 六十五秒五八七二九七五
三段 三十九秒五八二一三七五
四段 三十九秒四八二一三七五
五段 三十九秒三八五一三七三
六段 三十九秒五八二一三七五
七段【阙】
取泛立较均停者三十九秒五八二一三七五以较一段下泛平较一十三秒二六四八三一二五余二十六秒三一七三○六二五为较较以加一段下泛平差二十九分七一三一二六九三七五得二十九分九十七秒六十三防为缩初盈末定差置较较二十六秒三一七三○六二五以一段日一十五日
二十五刻而一得一秒七二五七二五再置泛立较之半一十九秒七九一○六八七五以段日而一得一秒二九七七七五两数并得三秒○二防三十五纎为缩初盈末平差 置泛立较之半一十九秒七九一○六八七五以段日一十五日二五为法除二次得八防五十一纎为缩初盈末立差以上为火星平立定三差之原
土星盈厯
立差二防八十三纎扣
平差四秒一十○防二十二纎减
定差一十五分一十四秒六十一防
积日积差
一段一十一日五十刻一度六八三二四五八二【八七五
<子部,天文算法类,推步之属,大统历志,卷三>】置第一段下泛平较内减其下泛立较余五十○秒九一七九七五为平立较以平立较加本段泛平差得一十五分一十四秒六十一防为盈定差
置平立较内减泛立较之半三秒七四二六七五余四十七秒一七五三以一段日十一日五十刻而一得四秒一十○防二十二纎为盈平差
置泛立数之半以一段日除二次得二防八十三纎为盈立差土星缩厯
立差三防三十一纎加
平差一秒五十一防二十六纎减
定差一十一分○一秒七十五防
积日
置一段泛平较内减其下泛立较余二十一秒七七二三七五为平立较以平立较加入本段泛平差得一十一分○一秒七十五防为缩定差
置平立较内减泛立较之半四秒三七七四七五余一十七秒三九四九以一段日一十一日五十刻为法除之得一秒五十一防二十六纎为缩平差
置泛立较之半以一段日为法除得三防三十一纎为缩立差以上为土星平立定三差之原
金星
立差一防四十一纎加
平差三纎减
定差三分五十一秒五十五防
积日积差
置一段下泛平较与其泛立较相减余一秒八六八一七五为平立较以加泛立差得三分五十一秒五十五防为定差置平立较与泛立数之半一秒八六四七二五相减余三十四纎以段日一十一日五十刻为法除之得三纎为平差置泛立较之半以段日为法除二次得一防四十一纎为立差以上为金星平立定三差之原
水星
立差一防四十一纎加
平差二十一防六十五纎减
定差三分八十七秒七十○防
积日
泛平差 泛平较 泛立较
术同金星求得定差三分八十七秒七十防平差二十一防六十五纎立差一防四十一纎
以上为水星平立定三差之原
右五星皆以立差为秒平差为本定差为总五星各以段次因秒木土金水四星并本惟火星较本各以积日而积五星皆较总又各以积日乗之得各寔测之度分
五星积日皆以度率除周日得三百六十五度二十五分太各以四分之一为象限惟火星用象限之一减象限为盈初缩末限加象限为缩初盈末限其命度为日者为各取盈缩厯乗除之便其寔积日之数即积度也
大统厯志卷三
钦定四库全书
大统厯志卷四
宣城梅文鼎撰
立成
既有法原则数可纪矣故立成次之立成云者依法以日月五星盈缩迟疾之数预为排定以便推歩取用也元志厯经歩七政盈缩迟疾皆有二术其一术以三差立算者即布立成法也其又术云以其下盈缩分乗入限分万约之以加其下盈缩积者用立成法也而遗立成未载无从入算今依大统厯通轨具録之其目有四曰太阳盈缩曰太隂迟
【打 印】 【来源:读书之家-dushuzhijia.com】