御制历象考成 - 第1部分

作者:【暂缺】 【74,710】字 目 录

负均轮圈移初均轮心使行于此则次轮心即行于初均轮而次均轮心亦得行于次轮葢负均轮圏半径乃新本轮半径加一次轮半径之分朔朢时太隂在次轮之最近防又在次均轮之下防而次均轮心又必常在次轮周故朔朢时止用初均轮不用次轮及次均轮也两时太隂在次轮之最逺防又在次均轮之上防而次均轮心亦必在次轮之最逺防故两时止用次轮不用次均轮也至于朔朢前后及两前后太隂在次轮之逺近二防之间又在次均轮之上下二防之间而次均轮心亦不在次轮之逺近二防故有次轮与次均轮之相差而或加或减也要之本轮者推本天之髙卑均轮者所以消息本轮之行度次轮者定朔朢两之逺近次均轮者又所以分别朔朢两前后之加减故本轮行度合初均轮之倍引而生初均数分髙卑左右而为朔朢之加减差也次轮行度合次均轮之倍离而生二三均数分逺近上下而为两及两前后之加减差也是故非騐诸实测无以知四轮之妙而明于四轮之用则于太隂迟疾之故思过半矣

西人第谷以前所用本轮次轮法如甲为地心乙丙丁为本天之一弧丙为本轮心戊己庚为本轮戊为最髙庚为最卑辛为次轮心辛壬为负次轮之圈己为次轮最近癸为次轮最逺如次轮周

在本轮最髙后六十度相切于己朔朢时太隂在己从地心甲作己甲实行线割本天于子子丙弧为平行实行之差

故用丙甲己三角形求得甲角即子丙弧为本轮所生初均数也上下时太隂则从次轮之巳防厯丑至癸从地心甲作癸甲实行线割本天于寅寅丙弧

为平行实行之差故用丙甲癸三角形求得甲角即寅丙弧为本轮所生初均及次轮所生次均之共数也【子丙弧为初均寅子弧为次均】第谷用此法求得均数征之实测在最髙前后两象限其数失之小在最卑前后两象限其数失之大故将本轮半径三分之存其二分为本轮半径取

其一分为均轮半径将次轮设于地心又设不同心之天其心循次轮周行而本轮心则循不同心天行均轮心循本轮周行如甲为地心乙丙丁为本天之一弧丙为本轮心戊己庚为旧本轮辛壬癸为新本轮辛丙半径为戊丙半径三分之二戊子丑为均轮戊辛半径为

戊丙半径三分之一本轮心循本天右旋均轮心循本轮左旋甲寅卯辰为次轮本天心循甲寅卯辰右旋半月一周朔朢时本天心与地心同在甲两时本天心在卯离地心极逺总之朔朢以外本天心俱离甲防本天皆为不同心之天矣

又第谷添设初均轮新法所推均数与本轮旧法所生均数最大之差有九分五十余秒在最高前后两象限为大最卑前后两象限为小如旧法太隂距最髙戊后六十度在已则丙甲巳角为初均数若新法则均轮心距最髙辛后六十度在壬太隂则距均轮之近防丑行

一百二十度至子而丙甲子角为初均数比旧法初均数丙甲巳角大一已甲子角其在最髙前之均数亦如之又如旧法太隂距最卑庚后六十度在已则丙甲已角为初均数若新法则均轮心距最卑癸后六十度在壬太隂则距均

轮之近防丑行一百二十度至子而丙甲子角为初均数比旧法初均数丙甲已角小一子甲已角其在最卑前之均

数亦如之然第谷所増均轮法极有理而所设不同心天与小轮合用则不便于观今将次轮置于均轮之周其心循均轮周右旋又将次轮半径与新本轮半径相加为半径作负均轮之圈均轮心则循负均轮圈左旋又増一次均轮以明二三均数之根用此法求各均数皆与第谷之法无异

依第谷所添初均轮并新増次均轮合本轮次轮共为一图如甲为地心乙丙丁为本天之一弧丙为本轮心戊己庚为旧本轮辛壬癸为新本轮巳子丑为原均轮寅卯为新増负均轮之圈其半

径为次轮半径与新本轮半径相加之数乃移均轮心于负均轮圈卯作辰巳午均轮与巳子丑原均轮等辰为逺防午为近防用均轮心行负均轮圈寅卯弧之倍度【即本轮周辛壬弧之倍度】从均轮近点午数至巳以巳为心作未申子次轮其未子全径与均轮辰午全径平行未为逺

防子为近防又以次轮周近防子为心作酉戌亥次均轮酉为上防戌为下防如均轮心循负均轮圈从最髙寅厯卯左旋则次轮心循均轮周从最近午厯巳右旋行均轮心距最髙之倍度次均轮心又循次轮周从最近子厯申右旋行太隂距太阳之倍度太阴则循次均

轮周从最下戌厯亥左旋亦行距太阳之倍度朔朢时太隂必在次均轮之最下戌次均轮心必在次轮周之最近子【即次轮周与巳子丑原均轮周相切之防】从地心甲作子甲实行线即成丙甲子三角形其甲角为初均数葢朔朢时太隂虽在次均轮之周然必在下防而次均轮心又必在次

轮周与均轮周相切之防故求朔朢时之初均数止用均轮不用次轮也【太隂在次均轮之戌防虽在子防之下然俱在实行线上其经度无异也】两时次均轮心从次轮周之最近子行至最逺未太阴从次均轮周之最下戌行至最上酉从地心甲作酉甲实行线成子甲未三角形其甲角为二均数葢两

时太隂必在次均轮周之上防而次均轮心又必在次轮周之逺防故两时止用次轮求二均数不用次均轮也【太隂在次均轮周之酉点虽高于未点然俱在实行线上其经度无异也】如在朔朢之后两之前次均轮心从次轮周之最近子行至申太隂从次均

打 印】 【来源:读书之家-dushuzhijia.com】