三八五○
以戊己与己庚相加得戊庚
五二七○二八八二为本天
全径半之得戊辛或辛庚二
六三五一四四一为本天半
径辛庚半径内减去己庚三
四五五三八五○余辛巳一
七九七五九一为两心差乃
用比例法变先所得之本天
半径为同比例数以先所得
之本天半径二六三五一四
四一与先所得之两心差一
七九七五九一之比即同于
今所设之本天半径一○○
○○○○○与今所得之两
心差之比而得六八二一六
○为两心
【差也】
求初均数
水星之初均数授时厯亦名盈缩差止用一表不分盈缩其最大者二度二八六一四八四七以周天三百六十度每度六十分约之得二度一十五分一十一秒五十一微新法厯书最大之初均数为三度三十四分二十秒二十三微【余即三度零十分度之五分七二三二八】惟星在次轮周之行度正当最逺最近二点之时止用此均数加减若在最逺最近前后仍有次均数之加减故此名初均数以别之
如图甲为地心即本天心乙丙丁为本天之一弧丙甲半径为一千万戊己庚为本轮戊丙半径为五十六万七千五百二十三戊为最髙庚为最卑辛壬癸
为均轮辛戊半径为一十一万四千六百三十二辛为最逺【七去本轮心逺】癸为最近【也去本轮心近】本轮心循本天右旋自乙而【也】丙而丁每日行五十九分零八秒有【与太阳之平行同】即水星经度均轮心循本轮左旋自戊而己而庚每月亦行五十九分零八秒有余【微不及于经度之行每年少一分四十五秒一十四微】即自行引数次轮心则循均轮右旋
自辛而壬而癸每日行二度五十七分有余为三倍引数也【土木火金四星之次轮心皆起均轮最近行倍引数惟水星则起均轮最逺行三倍引数】
如均轮心在本轮之最髙戊为初宫初度则次轮心在均轮之最逺辛或均轮心从本轮最髙戊向己行半周至最卑庚为六宫初度则次轮心亦从均轮最逺辛歴壬癸行一周至辛复自辛歴壬
行半周至最近癸从地心甲计之俱成一直线无平行实行之差故自行初宫初度及六宫初度俱无均数也
如均轮心从本轮最髙戊行三十度至子为一宫初度则次轮心从均轮最逺辛行九十度至丑【辛丑弧为戊子弧之三倍】从地心甲计之当本天之寅寅丙弧为实行不及平行之度乃用丙子丑三角形求丙
角及丑丙边此形有子角九十度【当丑癸弧】有子丙本轮半径五十六万七千五百二十三有丑子均轮半径一十一万四千六百三十二求得丙角一十一度二十五分一十秒丑丙边五十七万八千九百八十五以丙角一十一度二十五分一十秒与子丙庚角一百五十度相加【当子庚弧为自行度减半周之余】得丑丙庚角一百
六十一度二十五分一十秒于是用丑丙甲三角形求甲角此形有丙角一百六十一度二十五分一十秒有丑丙边五十七万八千九百八十五有丙甲本天半径一千万求得甲角一度零七秒即寅丙弧为自行一宫初度之初均数是为减差以减于平行而得实行也【凡求得初均角即求得丑甲边为次轮心距地心之数存之为后求次均之用】若
均轮心从最髙戊向己歴庚行三百三十度至卯为十一宫初度则次轮心从均轮最逺辛行二周复自最逺辛歴壬癸行二百七十度至辰从地心甲计之当本天之己巳丙弧与寅丙弧等故自行十一宫初度之初均数与一宫初度等但为实行过于平行之度是为加差以加于平行而得实行也用此法求得
最髙后三宫之减差【初宫初度至二宫末度】即得最髙前三宫之加差【九宫初度至十一宫末度】如均轮心从本轮最髙戊行一百三十五度至午为四宫一十五度则次轮心从均轮最逺辛歴壬癸行一周复行四十五度至未从地心甲计之当本天之申申丙弧为实行不及平行之度乃用丙午未三角形求丙角及丙未边此形
有午角一百三十五度【当癸未弧】有丙午本轮半径五十六万七千五百二十三有午未均轮半径一十一万四千六百三十二求得丙角七度零七分二十五秒丙未边六十五万三千六百三十四以丙角七度零七分二十五秒与午丙庚角四十五度相加【当午庚弧为自行度减半周之余】得
未丙庚角五十二度零七分二十五秒于是用未丙甲三角形求甲角此形有丙角五十二度零七分二十五秒有丙未边六十五万三千六百三十四有丙甲本天半径一千万求得甲角三度零四分三十六秒即申丙弧为自行四宫
一十五度之初均数是为减差以减于平行而得实行也若均轮心从最髙戊向已歴庚行二百二十五度至酉为七宫一十五度则次轮心从均轮最逺辛行一周复自辛歴壬癸行三百一十五度至戌从地心甲计之当本天之亥亥
丙弧与申丙弧等故自行七宫一十五度之初均数与四宫一十五度等但为实行过于平行之度是为加差以加于平行而得实行也用此法求得最卑前三宫之减差【三宫初度至五宫末度】即得最卑后三宫之加差【六宫初度至八宫末度】
求次均数
求水星次均数之理与金星同新法厯书载西人多録某测得次轮半径为本天半径十万分之三万五千七百二十其后西人第谷又改为本天半径千万分之三百八十五万今从之
如图甲为地心即本天心
乙丙丁为本天之一弧丙
甲为本天半径一千万戊
丙巳为本轮全径戊丙半
径为五十六万七千五百
二十三戊为最髙己为最
卑庚戊辛为均轮全径庚
戊半径为一十一万四千
六百三十二庚为最逺辛
为最近【为最近因此逺近以距】壬庚
癸为次轮全径壬庚半径
为三百八十 【本轮心言】五
万壬为最逺【此逺近以距地心言】癸
均轮心在最髙故平逺点
与最逺点合而壬亦即为
平逺癸亦即为平近本轮
心从本天冬至度右旋为
经度【即太阳平行度】均轮心从本
轮最髙戊左旋为引数【即自
行度】次轮心从均轮最逺庚
右旋为三倍引数星从次
轮平远点右旋行伏见度
如均轮心在本轮最髙戊
为自行初宫初度次轮心
在均轮最逺庚星在次轮
之最逺壬或在次轮之最
近癸从地心甲计之与轮
心同在一直线故无均数
之加减过此二点则星在
次轮周之左右而次均生
矣
如均轮心从最髙戊行六
十度至子为自行二宫初
度次轮心则从均轮最逺
庚行一百八十度至辛从
地心甲计之当本天之丑
其丙甲丑角二度一十一
分四十七秒【即丑丙弧】为初均
数寅为平逺卯为平近壬
为最逺癸为最近其平逺
距最逺之寅辛壬角亦二
度一十一分四十七秒【即壬
寅弧】与初均数丙甲丑角等
加星从平逺寅行三百五
十七度四十八分一十三
秒正当最逺壬或从平逺
寅行一百七十七度四十
八分一十三秒正当最近
癸则与次轮心辛同在一
直线而无次均数若星从次
轮平逺寅歴卯行三百三十
度至辰则于寅癸卯辰弧三
百三十度加壬寅弧二度一
十一分四十七秒得壬寅癸
卯【九百六十】辰弧三百三十二
度一十一分四十七秒为星
距次轮最逺之度从地心甲
计之当本天之己其丑甲巳
角即次均数乃用辛甲辰三
角形求甲角此形有辛角一
百五十二【五求即初】度一十一
分四十七秒有辰辛半径三
百八十五万【均数即己丑弧于壬寅癸
卯辰弧内减去壬】有辛甲边一千
零二十三万三千九百六十
五求即【寅癸半周即得】初
均数即【求辛甲边法见前求初均数篇】己
得甲角七度三十分零二
秒即己丑弧为次均数与
初均数丑丙弧二度一十
一分四十七秒相加【因初均丑
点在平行丙点之后而次均己点又在丑点之后故
相加】得己丙弧九度四十一
分四十九秒为实行不及
平行之度是为减差以减
于平行而得实行也若均
轮心从最髙戊歴己行三
百度至午为自行十宫初
度次轮心则从均轮最逺
庚行二周复行一百八十
度至辛星从次轮平逺寅
行三十度至未则初均数
丙甲申角与丙甲丑角等
次均数申甲酉角与丑甲
巳角等两角相加之丙甲
酉角亦与丙甲巳角等但
为实行过于平行之度是
为加差以加于平行而得
实行也【若测得平行实行之差及伏见度以
推次轮半径亦用辛甲辰三角形求之】如均轮心从最髙戊行一
百一十度至子为自行三
宫二十度次轮心则从均
轮最逺庚行三百三十度
至丑从地心甲计之当本
天之辰其丙甲辰角三度
三十四分二十六秒【即辰丙弧】为初均数寅为平逺卯为
平近壬为最逺癸为最近
其平逺距最逺之寅丑壬
角亦三度三十四分二十
六秒【即壬寅弧】与初均数丙甲
辰角等如星从平逺寅行
三百五十六度二十五分
三十四秒正当最逺壬或
从平逺寅行一百七十六
度二十五分三十四秒正
当最近癸则与次轮心丑
同在一直线而无次均数
星从次轮平逺寅行二
百度至巳则于寅癸卯巳
弧二百度加壬寅弧三度
三十四分二十六秒【即初均数】得壬寅癸卯巳弧二百零
三度三十四分二十六秒
为星距次轮最逺之度从
地心甲计之当本天之午
其辰甲午角即次均数乃
用丑甲巳三角形求甲角
【即午辰弧】此形有丑角二十三
度三十四分二十六秒【于壬
寅癸卯巳弧内减去壬寅癸半周即得】有己
丑半径三百八十五万有
丑甲边九百七十三万七
千零一十九求得甲角一
十三度五十五分四十四
秒即午辰弧为次均数与
初均数辰丙弧三度三十
四分二十六秒相加得午
丙弧一十七度三十分一
十秒为实行不及平行之
度是为减差以减于平行
而得实行也若均轮心从
最髙戊歴己行二百五十
度至未为自行八宫十度
次轮心则从均轮最远庚
行二周复行三十度至申
星从次轮平远寅行一百
六十度至酉则初均数丙
甲戌角与丙甲辰角等次
均数戌甲亥角与辰甲午
角等两角相加之丙甲亥
角亦与丙甲午角等但为
实行过于平行之度是为
加差以加于平行而得实
行也
御制厯象考成上编卷十四
<子部,天文算法类,推步之属,御制历象考成>
钦定四库全书
御制厯象考成上编卷十五
五星厯理七【五星合论】
五星交周
土木火三星纬度
金水二星纬度
五星伏见
五星视差
五星交周
五星交周名义虽与太隂同而其行之顺逆实相反也【太隂之交逆行五星之交顺行】然而本道与黄道交周土木火三星有之而金水二星则无何也土木火三星各有本道与黄道斜交其自黄道南过黄道北之亦为正交自黄道北过黄道南之亦为中交自交而后便生距度此本道与黄道相距所生之纬度也若夫金水二星则皆以黄道为本道因无二道之交故亦无二道相距之纬度也其所以又有纬度者由于次轮之面不与本道平行星行次轮周凡离本道者皆生纬度此又非独金水二星为然即土木火三星亦然也是故土木火三星本道与黄道相交之两仍名之曰交周自两交过地心作径线名之曰交线自两交之中过地心作径线名之曰大距线其次轮面之东西径线恒当本道之平面而与交线平行者曰枢线次轮面之南北径线恒与本道斜交而与黄道平行者曰次轮大距线其枢线之两端恒与本道相当遂成两交今名之曰次交而金水二星次轮面之东西径线亦曰枢线南北径
【打 印】 【来源:读书之家-dushuzhijia.com】