御制历象考成 - 第3部分

作者:【暂缺】 【130,251】字 目 录

限宫度又置太阳黄道经度加初亏复圆距弧复加减真时东西差【真时距分加者亦为加真时距分减者亦为减】得复圆太隂黄道经度两数相减余为复圆月距限度【有一宫作三十度】太阳黄道经度大于复圆黄平象限宫度者为限东小于复圆黄平象限宫度者为限西

求复圆限距地髙

用交食北极髙四十度黄平象限表以复圆春分距午时分察表内时分相近者取其与限距地髙相对之数得复圆限距地髙

求复圆太隂髙弧

用交食太阳髙弧表以复圆月距限及复圆限距地髙之度察其所对之度分秒得复圆太隂髙弧

求复圆黄道髙弧交角

用交食黄道髙弧交角表以复圆月距限及复圆限距地髙之度察其所对之度分秒得复圆黄道髙弧交角

求复圆白道髙弧交角

置复圆黄道髙弧交角加减黄白道角四度五十八分三十秒【食甚交周为初宫十一宫复圆月距限东则加月距限西则减食交周为为五宫六宫复圆月距限东则减月距限西则加】得复圆白道髙弧交角加过九十度者则限东变为限西限西变为限东不足减者则于黄白交角内反减黄道髙弧交角余为复圆白道髙弧交角限距地髙在天顶北者白平象限为在天顶南限距地髙在天顶南者白平象限为在天顶北

求复圆髙下差

用日躔太阳地半径差表以复圆太隂髙弧按太阳实引宫限察其所对之数为太阳地半径差又用月离太隂地半径差表以复圆太隂髙弧按太隂距地限察其所对之数为太隂地半径差两地半径差相减余为复圆髙下差

求复圆东西差

用交食东西南北差表以复圆白道髙弧交角及复圆髙下差察其与东西差所对之数得复圆东西差

求复圆南北差

用交食东西南北差表以复圆白道髙弧交角及复圆髙下差察其与南北差所对之数得复圆南北差

求复圆视行

复圆与食甚同在限东或同在限西者以复圆东西差与食甚东西差相减为差分以加减初亏复圆距弧【复圆以食甚同在白平象限东复圆东西差大则以差分加复圆东西差小则以差分减复圆与食甚同在白平象限西复圆东西差大则以差分减复圆东西差小则以差分加】得复圆视行食甚在限东复圆在限西者以复圆东西差与食甚东西差相并为差分以减初亏复圆距弧得复圆视行

求复圆距分

以复圆视行化秒为一率初亏复圆距时化秒为二率初亏复圆距弧化秒为三率求得四率为秒以时分收之得复圆距分

求复圆真时

置食甚真时加复圆距分得复圆真时

推太阳宿度第十四

求太阳黄道宿度

依日躔求宿度法求得本年黄道宿钤察太阳黄道经度足减本年黄道宿钤内某宿度分则减之余即为太阳黄道宿度

求太阳赤道宿度

依恒星厯理求得本年赤道宿钤察太阳赤道经度足减本年赤道宿钤内某宿度分则减之余即为太阳赤道宿度

推日食方位及食限总时

求初亏交周

置食甚交周减初亏复圆距弧得初亏交周

求复圆交周

置食甚交周加初亏复圆距弧得复圆交周

求初亏实纬

用交食黄白距度表以初亏交周宫度察其所对之度分秒得初亏实纬并记南北号

求初亏视纬

置初亏实纬加减初亏南北差得初亏视纬【加减之法与食甚视纬同】

求复圆实纬

用交食黄白距度表以复圆交周宫度察其所对之度分秒得复圆实纬并记南北号

求复圆视纬

置复圆实纬加减复圆南北差得复圆视纬【加减之法亦与食甚视纬同】

求初亏纬差角

用交食纬差角表以并径分及初亏视纬分察其所对之度分得初亏纬差角

求复圆纬差角

用交食纬差角表以并径分及复圆视纬分察其所对之度分得复圆纬差角

以下求定交角及方位并食限总时皆与前法同

推各省日食法

求各省日食时刻分秒

以京师食甚用时按各省东西偏度加减之【与推各省节气时刻加减法同】得各省食甚用时乃以各省食甚用时按各省北极髙度依京师推近时真时食分及初亏复圆真时法算之得各省日食时刻分秒

求各省日食方位

以各省黄道髙弧交角及各省初亏复圆视纬依京师推日食方位法算之得各省日食方位

推日食带食法

求带食距时

以本日日出或日入时分与食甚真时相减余为带食距时【带食距时者太阳出入地平距食甚之时刻也初亏或食甚在日出前者为带食出地食甚或复圆在日入后者为带食入地带食出地者则以日出时分与食甚真时相减余为带食距时带食入地者则以日入时分与食甚真时相减余为带食距时各省带食以各省日出入时刻及各省食甚真时算之】

求带食距弧

以初亏复圆距时化秒为一率初亏复圆视行化秒为二率【带食在食甚前用初亏视行带食在食甚后用复圆视行】带食距时化秒为三率求得四率为秒以度分收之得带食距弧【带食距弧者太阳出入地平距食甚之行度也初亏复圆以视行与距时比例得距分带食以距时与视行比例得距弧其理同也】

求带食两心相距

以半径一千万为一率带食距弧之余切线为二率食甚视纬之余为三率求得四率为两心相距之余切线检表得带食两心相距【带食两心相距者带食时太隂心与太阳心相距之度也初亏复圆以并径斜距之度与视纬求距弧之白道度带食以距弧之白道度与视纬求两心斜距之度其理同也】

求带食分秒

以太阳半径倍之为一率十分为二率并径内减带食两心相距余为三率求得四率即带食分秒【带食分秒者太阳出入地平时与太隂相掩之分数为太阳全径十分中之几分也食甚两心相距即视纬故于并径内减视纬为三率带食则于并径内减带食两心相距为三率其理同也】

御制歴象考成下编卷四

<子部,天文算法类,推步之属,御制历象考成>

钦定四库全书

御制厯象考成下编卷五

土星厯法

推土星用数

推土星法

用表推土星法

推土星用数

康熙二十三年甲子天正冬至为厯元

周天三百六十度【入算化作一百二十九万六千秒】

周日一万分

周岁三百六十五日二四二一八七五

纪法六十

土星每日平行一百二十秒小余六○二二五五一【土星每日平行二分零三十六微零八纎零七忽零六芒以秒法通之即得】

土星最髙每日平行十分秒之二又一九五八○三【土星最髙每岁平行一分二十秒一十二微以周嵗三百六十五日二四二一八七五除之得最髙每日平行一十三微一十纎二十九忽二十一芒以秒法通之即得】

土星正交每日平行十分秒之一又一四六七二八【土星正交每嵗平行四十一秒五十三微以周嵗三百六十五日二四二一八七五除之得正交每日平行六微五十二纎四十九忽一十九芒以秒法通之即得】

土星本天半径一千万

土星本轮半径八十六万五千五百八十七

土星均轮半径二十九万六千四百一十三

土星次轮半径一百零四万二千六百

土星本道与黄道交角二度三十一分

气应七日六五六三七四九二六

土星平行应七宫二十三度一十九分四十四秒五十五微

土星最髙应十一宫二十八度二十六分零六秒零五微

土星正交应六宫二十一度二十分五十七秒二十四微【按新法厯书载崇祯元年戊辰土星平行距冬至八宫二十八度零八分二十七秒最髙距冬至十一宫二十七度一十一分一十五秒正交距冬至六宫二十度四十一分五十二秒自崇祯戊辰年天正冬至次日至厯元甲子年天正冬至次日积二万零四百五十三日以积日各与每日平行相乗得数各与崇祯戊辰年诸应相加即厯元甲子年诸应也】

推土星法

求积年

自厯元康熙二十三年甲子距所求之年共若干年减一年得积年

求中积分

以积年与周岁三百六十五日二四二一八七五相乗得中积分

求通积分

置中积分加气应七日六五六三七四九二六得通积分上考往古则置中积分减气应得通积分

求天正冬至

置通积分其日满纪法六十去之余为天正冬至日分上考往古则以所余转与纪法六十相减余为天至冬至日分

求积日

置中积分加气应分六五六三七四九二六【不用日】减本年天正冬至分【亦不用日】得积日上考往古则置中积分减气应分加本年天正冬至分得积日

求土星年根

以积日与土星每日平行一百二十秒六○二二五五一相乗满周天一百二十九万六千秒去之余为积日土星平行加土星平行应七宫二十三度一十九分四十四秒五十五微得土星年根上考往古则置土星平行应减积日土星平行得土星年根

求最髙年根

以积日与土星最髙每日平行十分秒之二又一九五八○三相乘得数为积日最髙平行加土星最髙应十一宫二十八度二十六分零六秒零五微得最髙年根上考往古则置土星最髙应减积日最髙平行得最髙年根

求正交年根

以积日与土星正交每日平行十分秒之一又一四六七二八相乘得数为积日正交平行加土星正交应六宫二十一度二十分五十七秒二十四微得正交年根上考往古则置土星正交应减积日正交平行得正交年根

求土星日数

以所设日数与土星每日平行一百二十秒六○二二五五一相乘得数为秒以度分收之得土星日数

求最髙日数

以所设日数与土星最髙每日平行十分秒之二又一九五八○三相乘得数为秒以分收之得最髙日数

求正交日数

以所设日数与土星正交每日平行十分秒之一又一四六七二八相乘得正交日数

求土星平行

以土星年根与土星日数相加得土星平行

求最髙平行

以最髙年根与最髙日数相加得最髙平行

求正交平行

以正交年根与正交日数相加得正交平行

求引数

置土星平行减最髙平行得引数

求初均数

均轮心自本轮最髙左旋行引数度次轮心自均轮最近防右旋行倍引数度用两三角形法求得地心之角为初均数【次轮半径之角法详五星厯理】引数初宫至五宫为减六宫至十一宫为加随求次轮心距地心之边为求次均数之用

求初实行

置土星平行加减初均数得初实行

求星距日次引

置本日太阳实行减初实行得星距日次引【二求初均数篇月离厯法求月距日次引置初实行减本日太阳实行此求星距日次引置本日太阳实行减初实行盖太阴之行速于太阳合朔后太阴差而东故置太阴经度减太阳经度余为距日度星行迟于太阳合伏后星差而西故置太阳经度减星经度】

求次均数

星自次轮最逺防右旋行距日度用三角形法以次轮心距地心线为一边【余为距日度也即求初均数时所得次轮】次轮半

径一百 【心距地心之边】零四万二千六百为一边星距日度【过半周者与全周相减用其余】为所夹之外角求得地心对为次均数星距日初宫至五宫为加六宫至十一宫为减随求星距地心之边为求视纬之用

求本道实行

置初实行加减次均数得本道实行

求距交实行

置初实行减正交平行得距交实行【距交实行者次轮心距正交之度故置初实行减正交平行得距交实行也】

求升度差

以半径一千万为一率本道与黄道交角二度三十一分之余为二率距交实行之正切线为三率求得四率为黄道之正切线检表得黄道度与距交实行相减余为升度差距交实行不过象限为减过象限为加过二象限为减过三象限为加

求黄道实行

置本道实行加减升度差得黄道实行

求初纬

以半径一千万为一率本道与黄道交角二度三十一分之正为二率距交实行之正为三率求得四率为初纬之正检表得初纬

求星距黄道线

以半径一千万为一率初纬之正为二率次轮心距地心线为三率求得四率即星距黄道线

求视纬

以星距地心线为一率【即求次均数时所得星距地心之边】星距黄道线为二率半径一千万为三率求得四率为视纬之正检表得视纬距交实行初宫至五宫为黄道北六宫至十一宫为黄道南【星距地心线原以本道立筭而次轮面却与黄道平行则星距地心线在合伏前后必差而近在退冲前后必差而

打 印】 【来源:读书之家-dushuzhijia.com】