边缘计算和雾计算研究与应用

边缘计算和雾计算研究与应用
作 者: 林福宏
出版社: 西南交通大学出版社
丛编项:
版权说明: 本书为出版图书,暂不支持在线阅读,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《边缘计算和雾计算研究与应用》作者简介

内容简介

The main goalof this book is sharing the recent achievements of Edge & Fog Computing inour lab. It contains three parts. In the first part, we focus on the resourcemanagement in Edge & Fog Computing including Resource Caching Scheme in FogComputing, Radio Resource Management in 5GFog Cell, Transmission of Malware in Fog Computing, Incentive to ContributeResource-based Crowd funding in Fog Computing, Resource Scheduling Scheme inFog Computing, Resource sharing Model in Fog Computing, and Fair ResourceAllocation in IDS for Edge Computing. In the second part, we introduce thesecurity management in Edge & Fog Computing including Security Model in FogComputing, Node State Monitoring Scheme in Fog Computing, IDS Model in FogComputing, Key Management Scheme in Fog Computing, Intrusion Response Strategyin Fog Computing, Intrusion Detection in Fog Computing, and Security Mechanismin Fog Computing. In the third part, we propose some applications of Edge &Fog Computing. They are Real-time Fast Bi-dimensional Empiric...

图书目录

Contents

PART Ⅰ: Resource Management in Edge & Fog Computing

1 SteinerTree based Optimal Resource Caching Scheme in Fog Computing

1.1 Introduction

1.2 Related work

1.3 Problem formulation

1.4 Algorithm design

1.5 Running illustration

1.6 Numerical simulation

1.7 Conclusion

References

2 HypergraphBased Radio Resource Management in 5G Fog Cell

2.1 Introduction

2.2 Related work

2.3 Network architecture of fogcomputing in 5G

2.4 Radio resource management ofhypergraph partitioning in 5G Fog Cell

2.4.1 Task model

2.4.2 Hypergraph model of 5G FogCell resource pool

2.4.3 Hypergraph cluster andresource allocation

2.5 Numerical simulation

2.6 Conclusion

References

……

18.1 Introduction

18.2 Background materials

18.2.1 Fruitfly optimization algorithm (FOA)

18.2.2 Support vector machine (SVM)

18.3 Theproposed methodology

18.3.1 Process of image restoration processing

18.3.2 Optimization algorithm of TFOA based on LSSVR

18.4 Experiment and application

18.4.1 Parameter optimization analysis of TFOA

18.4.2 Imagerestoration analysis of LSSVM- TFOA

18.5 Conclusion

References