圜容较义 - 圜容较义

作者:【暂缺】 【10,143】字 目 录

与三边形等周者四边形容积必大于三边形

凡同周四直角形其等边者所容大于不等边者假有直角形等边者每边六共二十四其中积三十六另有直角形不等边者两边数十两边数二其周亦二十四与前形等周而其边不等故中积只二十又设直角形其两边各九其两边各三亦与前形同周而中积二十七又设一形两边各八两边各四亦与前同周而中积三十二或设以两边为七以两边为五亦与前同周而中积三十五是知边度渐相等则容积固渐多也

试作直角长方形令中积三十六

同前形之积然周得三十与前周

二十四者逈异令以此周作四边等形则中积必大于前形

凡同周四角形其等边等角者所容大于不等边等角者设甲乙丙丁不等角形从丙丁各作垂线又设引甲乙至己作戊丙己丁四角相等形【一卷三十五】与不等角形同底原相等【一卷十九又三十四】甲乙亦同戊己而乙丁

及甲丙线则赢于己丁戊丙线是甲乙丙丁之周大于戊丙己丁之周试引丁己至辛与乙丁等引丙戊至庚与甲丙等而作庚丙辛丁形则多一庚戊辛己形因显四等角形大于不等角形

以上四则见方形大于长形而多边形更大于少边形则圜形更大于多边形此其大略若详论之则另立五界说及诸形十八论于左

第一界等周形 谓两形之周大小等

第二界有法形 谓不拘三边四边及多边但边边相

等角角相等即为有法其欹邪不就

规矩者为无法形

第三界求各形心 但从心作圜或形内切圜或形外切

圜皆相等者即系圜与形同心

第四界求形面谓周线内所容人目所见乃形之一

第五界求形体如立方立圜三乘四乘诸形乃形之

全体

第一题

凡诸三角形从底线中分作垂线与顶齐高以中分线及高线作矩内直角方形必与三角形所容等

解曰有甲乙丙三角形平分乙丙于丁于庚作垂线至甲至辛作甲丁己丙及辛庚己丙直角题言直角与三角形等

先论曰甲乙丙三角形平分乙丙于丁作甲丁线次从甲作戊己线与乙丙平行又作己丙戊乙二线成直角形此直角倍大于甲丁丙己形亦倍大于甲乙丙角形【一卷四十一】故甲乙丙三角形与甲丁丙己形等【一卷三十六】

次论曰作甲丁垂线而第二图丁非甲乙之平分第三图甲在方形之外皆从甲作戊己线引长之与乙丙平行成戊己丙乙方形及甲己丙丁方形而各以丙乙平分于庚作庚辛垂线视甲丁为平行亦相等【一卷三十四】其戊己丙乙倍大

于辛庚丙己亦即倍大于三角形何者以辛庚丙己长方形分三角形底线半故【一卷三十六】

第二题

凡有法六角等形自中心到其一边之半径线作直角形线其半径线及以形之半周线舒作直线为矩内直角长方形亦与有法形所容等

解曰有甲乙丙丁戊己有法形其心庚自庚至甲乙作直

角线为庚辛另作壬癸线与庚辛

等作癸子与甲乙丙丁线等即半

周线也题言壬癸子丑直角形与

甲乙丙丁戊己形之所容等

论曰自庚到各角皆作直线皆分

作三角形皆相等【一卷八】其甲乙庚

三角形与甲辛辛庚二线所作矩

内直角形等【以甲辛分甲乙之半故本篇一题】若

以甲乙丙丁半形之周线为癸子

线以与壬癸线共作矩内直角形

即与有法全形等葢此半边三个

三角形照甲乙庚形作分中垂线

其矩线内直角形俱倍本三角形

第三题

凡有法直线形与直角三邉形并设直角形傍二线一长一短其短线与有法形半径线等其长线与有法形周线等则有法形与三邉形正等

解曰甲乙丙有法形其心丁从丁望甲乙作垂线又有丁戊己直角形其边丁戊与法形丁戊有等其戊己线又与甲乙丙之周线等题言丁戊己三角之体与甲乙丙全形等

论曰试作丁戊己庚直角形两平

分于壬辛作直线与丁戊平行则

丁戊辛壬直角形与甲乙丙形相

等【本篇二题】何者戊辛线得甲乙丙之

半周而又在丁戊矩内即与有法

形全体等故也其丁戊己三角形

与丁戊壬辛直角形等则丁戊巳

三角形与甲乙丙全形亦等

第四题

凡圜取半径线及半周线作矩内直角形其体等

解曰有甲乙丙圜其半径为丁乙

又有丁乙戊巳直角形两丁乙等

之半圜线与戊乙等题言甲乙丙

所容与丁乙戊巳直角形所容等

论曰试以乙戊引长到庚令庚戊

与乙戊等则乙庚与圜周全等次

从丁望庚作直线既丁乙庚三角形之地与全圜地相等【在圜书一题】而丁乙戊巳又与丁乙庚三角形等【本篇四又一卷四十注】则丁乙戊巳自与全圜体等

第五题

凡直角三边形任将一锐角于对边作一直线分之其对边线之全与近直角之分之比例大于全锐角与所分内锐角之比例

解曰有甲乙丙直角三边形丙为直角从甲锐角望所对丙乙边任作甲丁线题言丙乙线与丙丁线之比例大于乙甲丙角与丁甲丙角之比例

论曰甲丁线大于甲丙而小于甲乙【一卷十九】若以甲为心以丁为界作半规必分甲己线于乙之内而透甲戊线于丙之外其甲

乙丁三角形与甲己丁三角形之比例大于甲丁丙三角形与甲丁戊之比例何者一为甲乙丁大形与甲己丁小形比一为甲丁丙小形与甲丁戊大形比也则更之乙甲丁形与丁甲丙形之比例大于己甲丁形与丁甲戊形之比例【五卷二十七】合之则乙甲丙形与丁甲丙形即是乙丁线与丁丙线之比例【形之比例与底线之比例相等在六卷】固大于甲己戊形与甲丁戊形之比例其甲己戊圜分与甲丁戊圜分之比例原若己甲戊角与丁甲戊角之比例【六卷三十三系】则乙丙线与丁丙线之比例大于乙甲丙角与丁甲丙角之比例也

第六题

凡直线有法形数端但周相等者多边形必大于少边形

解曰设直线有法形二为甲乙丙为丁戊己其圜周等

而甲乙丙形之边多于丁

戊己【不拘四边六边虽十边与十一二边皆同

此论】题言甲乙丙之体大于

丁戊己之体

论曰试于两形外各作一圜而从心望一边作庚壬作辛癸两垂线平分乙丙于壬分戊己于癸【三卷三】其甲乙丙形多边者与丁戊己形少边者外周既等而以乙丙求周六而徧以戊己求周四而徧则乙丙边固小于戊己边而乙壬半线亦小于戊癸半边矣兹截癸子与壬乙等而作辛子线又作辛戊辛己及庚丙庚乙诸线次第论之其己丁戊圜内各切线等即匀分各边俱等而全形边所倍于戊己一边数与全圜切分所倍于戊己切分地亦等则甲乙丙内形全边所倍于乙丙一边与其全圜切分所倍于乙丙切分不俱等乎其戊己圜切分与戊丁己全圜之切分若戊辛己角之与全形四直角【六卷三十三题之系】则以平理推之移戊己边于甲乙丙全边亦若戊辛己角之于四直角也而甲乙丙内形周与乙

丙一边犹甲乙丙诸切圜与乙丙界之一切圜亦犹四直角之与庚乙丙角也【六卷三十三之二系】则又以平理推戊己与乙丙即戊癸与乙壬而乙壬即是癸子又以平理推而戊辛己角与乙庚丙角亦若戊辛癸之与乙庚壬也【五卷十五】夫戊癸与癸子之比例原大于戊辛癸角与子辛癸角之比例【本篇五】则戊辛癸与乙庚壬之比例大于癸辛戊与癸辛子之比例【五卷十三】而癸辛子角大于壬庚乙角【五卷十】其辛癸子与庚壬乙皆系直角而辛子癸角明小于庚乙壬角【一卷三十二】令移壬乙庚角于癸子上而作癸子丑角则其线必透癸辛到丑其庚壬乙三角形之壬与乙两角等于丑癸子三角形之癸子两角而乙壬边亦等于子癸边则丑癸线亦等于庚壬线而庚壬实赢于辛癸【一卷二十六】令取庚壬线及甲乙丙半周线作矩内直角形必大于辛癸线及丁戊己半周线所作矩内

直角形也【本篇二】然则多邉直线形之所容岂不大于等周少边直线形之所容乎

第七题

有三角形其邉不等于一边之上另作两边等三角形与先形等周

解曰有甲乙丙三角形其甲乙大于丙乙两边不等欲于甲丙上另作三角形与甲乙丙周等两边又等其法作丁戊线与甲乙乙丙合线等两平分于己甲乙乙丙两边并既大于甲丙边【一卷十】则丁己己戊两边并亦大于甲丙而丁己己戊甲丙可作三角形矣【一卷三十二】以作甲庚丙得所求葢庚甲庚丙自相等而甲丙同边则二形之周等而甲

庚丙与甲乙丙为两边等之三角形【此庚防必在甲乙线外若在甲乙邉上过辛则辛丙线小于辛乙乙丙合线即不得同周】

第八题

有三角形二等周等底其一两边等其一两边不等其等边所容必多于不等邉所容

解曰有甲乙丙形其甲乙边大于乙

丙令于甲丙上更作甲丁丙三角形

与甲乙丙等周【本篇上】而丁甲丁丙两

腰等亦与甲乙乙丙合线等题言甲丁丙角形大于甲乙丙

论曰试引甲丁至戊令丁戊与丁甲等亦与丁丙等又作丁乙乙戊线夫甲乙乙戊合线既大于甲戊即大于甲丁丁丙合线亦大于甲乙乙丙合线此两率者令减一甲乙则乙戊大于乙丙而丁戊乙三角形之丁戊丁乙两边与丁丙乙三角形之丁丙丁乙两边等其乙戊底大于乙丙底则戊丁乙角大于丙丁乙角而戊丁乙角逾戊丁丙角之半【一卷三十二】令别作戊丁己角与丁甲丙角等则丁己线在丁乙之上而与甲丙平行【一卷廿八】又令引长丁己与甲乙相遇而作己丙线聨之其甲丁丙甲己丙既在两平行之内又同底是三角形相等也【六卷

一】因显甲己丙大于甲乙丙而甲丁

丙两边等三角形必大于等周之甲

乙丙矣【问戊丁乙角何以逾戊丁丙角之半曰丁甲丙与丁丙甲】

【两角等而戊丁丙为其外角凡外角必兼两内角故也】

第九题

相似直角三边形并对直角之两线为一直线以作直角方形又以两相当之直线四并二直线各作直角方形其容等

解曰有甲乙丙及丁戊己三角形二相似其乙戊两角为直角而甲与丁丙与己角各相等甲丙与丁己相当甲乙与丁戊相当题言并甲丙丁己为一直线于上作直角方形与并甲乙丁戊作直线及并乙丙戊己作直线各于其上作直角方形两并

论曰引长丁戊至庚令戊庚与甲乙同度次从庚作线与戊己平行又引丁己长之令相遇于辛从己作己壬线与戊庚平行【一卷二十九】则巳壬辛之角形与丁戊巳相似而丁戊巳与甲乙丙相似矣【一卷三十二】何者巳壬辛角与庚角等庚角与丁戊巳角等己角又与乙角等而辛角与丁巳戊角及丙角俱等壬巳辛角与甲角亦等【一卷三十四】又巳壬边与戊庚相等则亦与甲乙相等而壬辛与乙丙巳辛与甲丙俱相等【一卷二十六】故丁辛线兼丁巳甲丙之度丁庚线兼丁戊甲乙之度而庚辛亦兼戊巳乙丙之度庚壬即戊巳也【一卷三十四】然则丁辛上直角方形与丁庚及庚

辛上两直角方形并自相等矣

第十题

有三角形二其底不等而腰等求于两底上另作相似三角形二而等周其两腰各自相等

解曰甲乙丙丁不等两底上有甲戊乙及丙己丁三角形二其戊甲戊乙腰与巳丙巳丁腰俱相等若甲乙大于丙丁者则戊角大于己角【一卷二十五】而两三角形不相似求于两底上各作三角形相似而两腰各相等其周亦等

法曰作庚辛线与甲戊戊乙丙己己丁四

线等而分之于壬令庚壬与壬辛之比例若甲乙与丙丁【六卷十】甲乙既大于丙丁则庚壬亦大于壬辛而平分庚壬于癸平分壬辛于子庚壬与壬辛既若甲乙与丙丁则合之而庚辛之视壬辛若甲乙丙丁并之视丙丁矣【五卷一】夫庚辛并既大于甲乙丙丁并【两边必大于一边在一卷二十】则壬辛大于丙丁而庚壬大于甲乙也【五卷十四】甲乙庚癸癸壬三线每二线必大于一线而丙丁壬子子辛亦然令于甲乙上用庚癸癸壬线作甲丑乙三角形为两腰等而其周在甲戊乙形之外【以戊】

【甲戊乙得庚辛之半而庚壬之度过之故】于丙丁上用壬子子辛线作丙寅丁三角形亦两腰等而其周在丙己丁之内【己丙己丁亦得庚壬之半而壬辛之度不及故俱一卷二十二】

论曰并甲戊戊乙丙己己丁四线之度既与并甲丑丑乙丙己己丁四线之度相等则甲丑乙丙寅丁两形自与甲戊乙丙己丁两形同周而其两腰亦自相同至于两形相似何也甲乙与丙丁若庚壬与壬辛而减半之庚壬与壬子【五卷十五】又若丑甲与寅丙丑乙与寅丁也则更之而甲乙与甲丑若丙丁与丙寅而甲丑与丑乙若丙寅与寅丁是两形为同边之比例自相似【六卷五

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页12 3下一页末页共3页/6000条记录