数学奥林匹克教程

数学奥林匹克教程
作 者: 叶军
出版社: 湖南师大
丛编项: 奥赛经典高级教程系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 高中数学
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  叶军湖南益阳市人,1963年4月生,现为湖南师范大学数学系副教授,中国数学奥林匹克高级教练,硕士研究生导师。已发表论文百余篇,出版著作(主编、参编)1 2部。是湖南师范大学附中第34届I M0金牌获得者、第3 2届IM0银牌获得者的主要教练之一。2002年,所教湖南师大附中学生肖维再一次获得第43届lM0金牌。

内容简介

《数学奥林匹克教程》我国中学生数学竟赛,最早始于1965年,在华罗庚等老一辈数学家的倡导下,北京、上海、天津等省市各自独立的具行了地区性竞赛。高中数学联赛第一试和第二试,第一试试题趋于大众化和普及型命题,而第二试试题及中国数学奥林匹克试题,国家集训队选拔赛试题等都与国际数学奥林匹克竞赛试题的范围,难度等相似或较容易一些。

图书目录

第一章代数式的恒等变换

1—1代数式的恒等变换方法与技巧。

1—2和的一些重要恒等变换式及应用

1—3反三角函数恒等变换式及应用

l一4 Abel恒等式及应用

1—5 细ge插值恒等式及应用

1—6二项式定理与组合恒等式的证明

1—7差分恒等变换及应用

习题简答与提示

第二章函数

2—1函数的一般概念

2—2函数的图象及应用

2—3函数的性质及应用

2—4函数的值域与极值(最值)

2—5函数的迭代

2—6函数方程

2—7高斯函数[z]及应用

习题简答与提示

第三章数列

3—1和积裂项法及应用

3—2求递归数列的通项

3—3特征根方法及其逆方法的应用

3—4数列的性质(一)

3—5数列的性质(二)

习题简答与提示

第四章不等式

4一1不等式的重要证明方法与技巧

4—2不等式与多变量函数极值

4—3一些著名不等式及应用

4—4几何不等式

习题简答与提示

第五章复数

5一l复数的一般概念

5—2复数与不等式

5—3复数与三角函数

5—4复数与几何

习题简答与提示

第六章多项式

6一l一元多项式的运算与恒等

6—2多项式的整除性

6—3多项式的根

习题简答与提示

第七章初等几何(上)

7—1平面几何(一)重点内容与方法

7—2平面几何(二)定值极值与轨迹

7—3平面几何(三)几何变换

习题简答与提示

第八章初等几何(下)

8一l立体几何(一)重点内容与方法

8—2立体几何(二)多球相切问题的解法

8—3解析几何(一)直线型问题

8—4解析几何(二)二次型问题

习题简答与提示

第九章初等数论

9—1整数及其整除生

9—2同余理论及应用

9—3不定方程

9—4数的进位制及应用

习题简答与提示

第十章组合数学中的若干专题

10一l集合问题

10—2两个重要原理

lO一3计数方法

10—4图论方法

习题简答与提示

附录一 国际数学奥林匹克简介

附录二 中国数学奥林匹克简介