概率论与数理统计(英文版 第2版)

概率论与数理统计(英文版 第2版)
作 者: 桂文豪
出版社: 北京交通大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  文豪,男,北京交通大学教授,数据科学系主任。王立春,男,北京交通大学教授,长期从事概率论与数理统计的教学和科研工作。孔令臣,男,北京交通大学教授

内容简介

本书根据编者多年的双语教学经验编写,介绍了概率论与数理统计的基本概念、原理、计算方法,以及实际应用。在编写过程中,吸取了国内外优秀教材的优点,注重理论与实践相结合,系统性强,图例丰富,突出统计思想,着力培养学生分析问题和解决实际问题的能力。本书主要内容包括概率与随机事件、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、参数估计、假设检验、线性回归分析和统计软件 R 的介绍。每章中精选了实用性强的例题和习题。本书可作为高等院校理工科各专业本科生的“概率论与数理统计”课程双语教材,也可供工程技术人员、科技工作者参考。

图书目录

Chapter 1Introduction to Probability1

1.1Random Experiments2

1.2Sample Space2

1.3Relations and Operations between Events3

1.4The Definition of Probability7

1.5Equally Likely Outcomes Model10

1.6Conditional Probability17

1.7Total Probability and Bayes Theorem20

1.8Independent Events24

Exercise 126

Chapter 2Random Variables and Distributions31

2.1Random Variables32

2.2Cumulative Distribution Function33

2.3Discrete Distributions35

2.4Some Common Discrete Distributions35

2.5Continuous Distributions41

2.6Some Useful Continuous Distributions43

2.7Functions of a Random Variable50

Exercise 256

Chapter 3Multivariate Probability Distributions61

3.1Bivariate Distributions62

3.2Marginal Distributions70

3.3Conditional Distributions73

3.4Independent Random Variables81

3.5Functions of Two or More Random Variables86

Exercise 3106

Chapter 4Characteristics of Random Variables113

4.1The Expectation of a Random Variable114

4.2Variance122

4.3The Characteristics of Some Common Distributions124

4.4Chebyshevs Inequality130

4.5Covariance and Correlation Coefficient131

4.6Moment and Covariance Matrix139

Exercise 4143

Chapter 5Large Random Samples149

5.1The Law of Large Numbers150

5.2The Central Limit Theorem152

Exercise 5156

Chapter 6Estimation159

6.1Population and Sample160

6.2Moment Estimation163

6.3Maximum Likelihood Estimation165

6.4Properties of Estimators170

6.5Three Important Distributions172

6.6Confidence Intervals182

Exercise 6191

Chapter 7Hypothesis Testing197

7.1Basics of Hypothesis Testing198

7.2Hypothesis Tests for a Population Mean200

7.3Testing Differences between Means207

7.4Hypothesis Tests for One or Two Variances210

7.5Goodness of Fit Tests214

Exercise 7219

Chapter 8Linear Regression225

8.1Linear Regression Model226

8.2Least Squares Estimation227

8.3Properties of Linear Regression Estimators230

8.4Inferences Concerning the Slope234

8.5Regression Validity236

8.6Confidence Interval for Mean Response237

8.7Inference for Prediction239

Exercise 8242

Chapter 9Introduction to R Language245

9.1Features of R Language246

9.2R Installation247

9.3Vector, Matrix and Data Frame248

9.4Loop and Branch Control Statements252

9.5Common Probability Distributions255

9.6Some Examples256

Appendix ABinomial Probability Distribution262

Appendix BPoisson Cumulative Distribution265

Appendix CStandard Normal Table268

Appendix Dtdistribution Upper Quantiles tα(n)270

Appendix Eχ2distribution Upper Quantiles χ2α(n)273

Appendix FFdistribution Upper Quantiles Fα(n1,n2)276

Appendix GSome Common Probability Distributions281

Bibliography283