我们把大量的数据看作可供借鉴的一份财产。这些数据越庞大越好——假如您有足够的工具来分析它、组合它,并且使自己更有创造性。
——布里特·梅约,宾州石油公司信息技术部主任
更优良的电脑系统不可避免的结果,就是更精明地利用员工的时间。马克和斯宾赛公司用智能软件不断地扫描它的销售数据,追踪销售趋势,发现什么货畅销,什么货卖不动,从而得以更有效地利用其500~600名采购员。这些采购员不用翻阅前一天厚厚的书面报告来确定销售情况是否良好,可以把时间更有效地花在利用最新数据提供给他们的信息上。如果销售情形如人所愿,那么就不用人来干涉,而新的软件系统自己就可以监测销售数据,并标出那些销售量超过或低于预定量的货物。系统自动做出例外报告,而采购员则只处理例外事件。
马克和斯宾赛的信息技术和后勤处处长济斯·博格说:“有了这些智能系统,我们就能让员工从重复性的、不用思考的工作转移到更有生产效率的活动中去。他们只利用自己的智力来处理例外事件,而让电脑去做其他一切决策。我们可以重新分派这些员工,让他们选择新产品,做市场分析,以及从事其他一些增值性的活动,而不是照管日常存货。因而,采购员们的时间花得更有效率,比以前增加了多得多的价值。”
利用软件来处理日常数据琐碎杂务,能让您有机会在真正重要的地方添上您本人的手笔。在明显是人写的便条和一封电脑打印的通用信函之间,在接听人打来的关于某一新产品或特殊事件的电话和电脑打的电话之间,有相当明显的差别。让一个人来接待一位对某重要事件感到不满的客户或有特殊需求的客户,其价值之高是不可估量的。例如,在一家旅馆里,智能软件能够极大地缩短入住登记和结账离开的时间,也可以征求常规的顾客反馈,从而给员工腾出时间。如果多安排六七个人充任前台接待员而不是普通职员,那么顾客岂不会在旅馆里住得开心得多吗?
然而电子贸易却带来新的挑战。在一家直接售货的商店里,销售员可以利用与顾客直接接触的过程,例如顾客提问、着装款式,以及外貌、语言等来更好地揣测顾客的兴趣。但是在网上商店里,却没人能看见顾客,而又要让顾客尽可能地自己购物,因此网上商店的店主要做的是一种饶有兴趣的侦探性工作。在顾客浏览行为和购物历史的基础上,您将怎样来设计顾客身份的模式呢?这就需要尖端的数据分析能力。
扩大人类分析的范围
马克和斯宾赛所用的数字分析工具能让人们只注意例外而不是常规,并且也正在改变着工作的性质。它们的功能如此强大,以至于让马克和斯宾赛的一些雇员在开始时曾担心被电脑取代。对于任何做决策的职能不是让人进行,而完全让机器来干,人们自然会抵触。当一个数据库扩张到足够庞大、足够复杂时,电脑可以进行初期的搜索和分类,且比人干得好得多,而人却不能在大量主要的数据中认别模式。而在数据库里、在文档系统里、在消息系统里,以及在网址上可获得的数据,却呈指数增长。我们获得这一切数据的全部价值的唯一办法,就是用电脑工具来索求,并把它转化为可操作的信息。
利用软件十进制在大量数据中寻找有用的模式,这叫做数据挖掘。数据挖掘的第一个主要步骤就是在线分析处理(olap),它使得多种询问更为有效。原本作为结算和统计的目的而搜集的数据,被认为是一座潜在的信息宝藏,可供编制模式、预测,以及支持决策。各公司开始创建公司数据库,也称作数据仓库,以便满足这些对商务分析的新需求。集中在一家企业的某方面或部门的数据子集,往往称为数据市场。
哈泼柯林斯出版公司利用基于pc之上的在线分析处理系统,追踪实时书籍销售情形,以便印刷出足够的书来满足分销商的需求。该公司用这一方法就可避免在销售渠道里积压大批未售出的书,否则出版商就要把这些书作为退货收回来。这个新的系统运作了仅仅一年,就帮助哈泼柯林斯公司把其最畅销书的退货率从30%减少到10%。每个百分点都代表着数百万美元的节省。
数字化工具把信息分门别类
在大部分商务组织里,人们需要用各种方法来查看信息。高级经理们往往想查看销售情况的综合视图,然后查看按地区列出的视图,接着查看按国家列出的视图。销售经理们想查看小组销售和个人销售的数字,或顾客账户的数字。产品经理们则想查看根据销售渠道划分的数字或更深层地看那些存货单元(skus)销售势头旺盛或疲软。不同的人查看的信息也各不同,如月份销售量或本年度最近销售量、实际销售量与预算之比、销售的逐年变化,以美元计算的销售量或以其他货币计算的销售量。因此,典型的情况就是,一家公司的财会部门需要制做出许多不同的报表来满足这些多样的商务需求。
这些报表经常可以用电子表格的数字方式来制作。大纲控制可让商界人士从摘要层面开始,然后在任一项目上单击鼠标,以便深入到下属各层的细节。另一个被称作表格透视功能,即使您在多种视图上看到同样的数据。假如您正在看按销售员分类的销售数量,但又想转移到按顾客分