| 作 者: | 史忠植 |
| 出版社: | 清华大学出版社 |
| 丛编项: | |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 数据仓库与数据挖掘 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
第1章 绪论
1.1 知识
1.2 知识发现的过程
1.3 知识发现的任务
1.4 知识发现的方法
1.4.1 统计方法
1.4.2 机器学习
1.4.3 神经计算
1.4.4 可视化
1.5 知识发现的对象
1.5.1 数据库
1.5.2 文本
1.5.3 Web信息
1.5.4 空间数据
1.5.5 图像和视频数据
1.6 知识发现系统
第2章 决策树
2.1 归纳学习
2.2 决策树学习
2.3 CLS学习算法
2.4 ID3学习算法
2.4.1 信息论简介
2.4.2 信息论在决策树学习中的意义及应用
2.4.3 ID3算法
2.4.4 ID3算法应用举例
2.4.5 C4.5算法
2.5 决策树的改进算法
2.5.1 二叉树判定算法
2.5.2 按信息比值进行估计的方法
2.5.3 按分类信息估值
2.5.4 按划分距离估值的方法
2.6 决策树的评价
2.7 简化决策树
2.7.1 简化决策树的动机
2.7.2 决策树过大的原因
2.7.3 控制树的大小
2.7.4 修改测试属性空间
2.7.5 改进测试属性选择方法
2.7.6 对数据进行限制
2.7.7 改变数据结构
2.8 连续性属性离散化
2.9 基于偏置变换的决策树学习算法BSDT
2.9.1 偏置的形式化
2.9.2 表示偏置变换
2.9.3 算法描述
2.9.4 过程偏置变换
2.9.5 基于偏置变换的决策树学习算法BSDT
2.9.6 经典案例库维护算法TCBM
2.9.7 偏置特征抽取算法
2.9.8 改进的决策树生成算法GSD
2.9.9 实验结果
2.10 单变量决策树的并行处理
2.10.1 并行决策树算法
……
第3章 支持向量机
第4章 迁移学习
第5章 聚类分析
第6章 关联规则
第7章 粗糙集
第8章 神经网络
第9章 贝叶斯网络
第10章 隐马尔可夫模型
第11章 图挖掘
第12章 进化计算
第13章 分布式知识发现
第14章 Web知识发现
第15章 认知神经科学知识发现
参考文献