SAP实用数据科学:企业级数据的机器学习技术(影印版 英文版)

SAP实用数据科学:企业级数据的机器学习技术(影印版 英文版)
作 者: Greg Foss,Paul Modderman
出版社: 东南大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《SAP实用数据科学:企业级数据的机器学习技术(影印版 英文版)》作者简介

内容简介

你是否正在使用SAP ERP系统并迫切希望释放其数据的巨大价值?通过这本实用指导书,SAP资深专家Greg Foss和Paul Modderman为你展示如何使用若干数据分析工具来解决SAP数据中存在的有趣问题。你将跟随一个贯穿全书的虚构公司,学会处理真实场景中遇到的问题。使用真实数据创建示例代码和可视化图,SAP业务分析师将学会实用的分析方法,从而获得对业务数据的更深入了解。数据工程师和数据科学家将探索如何将SAP数据添加到他们的分析过程中。通过对SAP流程和数据科学工具的深入研究,你将找到揭露数据真相的强大方法。

图书目录

Preface

1. Introduction

Telling Better Stories with Data

A Quick Look: Data Science for SAP Professionals

A Quick Look: SAP Basics for Data Scientists

Getting Data Out of SAP

Roles and Responsibilities

Summary

2. Data Science for SAP Professionals

Machine Learning

Supervised Machine Learning

Unsupervised Machine Learning

Semi-Supervised Machine Learning

Reinforcement Macl'rine Learning

Neural Networks

Summary

3. SAP for Data Scientists

Getting Started with SAP

The ABAP Data Dictionary

Tables

Structures

Data Elements and Domains

Where-Used

ABAP QuickViewer

SE16 Export

OData Services

Core Data Services

Summary

4. Exploratory Data Analysis with R

The Four Phases of EDA

Phase 1: Collecting Our Data

Importing with R

Phase 2: Cleaning Our Data

Null Removal

Binary Indicators

Removing Extraneous Columns

Whitespace

Numbers

Phase 3: Analyzing Our Data

DataExplorer

Discrete Features

Continuous Features

Phase 4: Modeling Our Data

TensorFlow and Keras

Training and Testing Split

Shaping and One-Hot Encoding

Recipes

Preparing Data for the Neural Network

Results

Summary

5. Anomaly Detection with R and Python

Types of Anomalies

Tools in R

AnomalyDetection

Anomalize

Getting the Data

SAP ECC System

SAP NetWeaver Gateway

SQL Server

Finding Anomalies

PowerBI and R

PowerBI and Python

Summary

6. Predictive Analytics in R and Python

Predicting Sales in R

Step 1: Identify Data

Step 2: Gather Data

Step 3: Explore Data

Step 4: Model Data

Step 5: Evaluate Model

Predicting Sales in Python

Step 1: Identify Data

Step 2: Gather Data

Step 3: Explore Data

Step 4: Model Data

Step 5: Evaluate Model

Summary

7. Clustering and Segmentation in R

Understanding Clustering and Segmentation

RFM

Pareto Principle

k-Means

k-Medoid

Hierarchical Clustering

Time-Series Clustering

Step 1: Collecting the Data

Step 2: Cleaning the Data

Step 3: Analyzing the Data

Revisiting the Pareto Principle

Finding Optimal Clusters

k-Means Clustering

k-Medoid Clustering

Hierarchical Clustering

Manual RFM

Step 4: Report the Findings

R Markdown Code

R Markdown Knit

Summary

8. Association Rule Mining

Understanding Association Rule Mining

Support

Confidence

Lift

Apriori Algorithm

Operationalization Overview

Collecting the Data

Cleaning the Data

Analyzing the Data

Fiori

Summary

9. Natural Language Processing with the Google Cloud Natural Language API

Understanding Natural Language Processing

Sentiment Analysis

Translation

Preparing the Cloud API

Collecting the Data

Analyzing the Data

Summary

10. Conclusion

Original Mission

Recap

Chapter 1: Introduction

Chapter 2: Data Science for SAP Professionals

Chapter 3: SAP for Data Scientists

Chapter 4: Exploratory Data Analysis

Chapter 5: Anomaly Detection with R and Python

Chapter 6: Prediction with R

Chapter 7: Clustering and Segmentation in R

Chapter 8: Association Rule Mining

Chapter 9: Natural Language Processing with the Google Cloud Natural

Language API

Tips and Recommendations

Be Creative

Be Practical

Enjoy the Ride

Stay in Touch

Index