半导体物理与器件:基本原理

半导体物理与器件:基本原理
作 者: 尼曼
出版社: 清华大学出版社
丛编项: 国外大学优秀教材微电子类系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《半导体物理与器件:基本原理》作者简介

内容简介

本书是一本很好的英文教科书和参考书,与目前我国大学本科生的同类教材相比,这本书具有以下特点:(1)全新的体系结构。目前国内相关专业的教学体系是先学理论物理(包括统计物理、量子力学等)、固体物理,再学半导体物理,最后学半导体器件,一般需要用2至3个学期来学完这些课程。这本书次上述课程的有关内容有机地结合在一起,学生只需具有高等数学和大学物理的基础,用1至2个学期时间就可以系统地学习到半导体物理与器件课程提供的内容。(2)注重概念方法。从内容的整体编排到具体内容的叙述,都体现了突出物理概念、强调基本分析方法的指导思想。本书还采用了大量的插图,帮助读者理解概念。(3)可读性强,便于自学。全书思路清晰,说理清楚,易于读者理解和掌握。每章的开头都有引言,告诉读者可以从本章学到什么,应该掌握什么;每章中都有例题和读者自测题;每章的最后还有总结、复习提纲和大量习题(其中一些是计算机模拟的练习题)。(4)内容丰富,覆盖面广。本书除了介绍半导体物理外,对器件的介绍也相当丰富。除了最基本和常用的BJT和MOSFET器件,还详细介绍了半导体光电器件和功率器件。不仅讲述器件的基本原理,而且介绍了器件的发展。每章后面的参考文献更让读者可以了解到自己所需要的知识细节。

图书目录

Preface

CHAPTER I

The Crystal Structure of Solids

Preview

1.1 Semiconductor Materials

1.2 Types of Solids

1.3 Space Lattices

1.3.1 Primitive and Unit Cell

1.3.2 Basic Crystal Structures

1.3.3 Crystal Planes and Miller Indices

1.3.4 The Diamond Structure

1.4 Atomic Bonding

1.5 Imperfections and Impurities in Solids

1.5.1 Imperfections in Solids

1.5.2 Impurities in Solids

1.6 Growth of Semiconductor Materials

1.6.1 Growth from a Melt

1.6.2 Epitaxial Growth

1.7 Summary

Problems

CHAPTER 2

Introduction to Quantum Mechanics

Preview

2.1 Principles of Quantum Mechanics

2.1.1 Energy Quanta

2.1.2 Wave-Particle Duality

2.1.3 The Uncertainty Principle

2.2 Schrodinger's Wave Equation

2.2.1 The Wave Equation

2.2.2 Physical Meaning of the Wave Function

2.2.3 Boundary Conditions

2.3 Applications of Schrodinger's Wave Equation

2.3.1 Electron in Free Space

2.3.2 The Infinite Potential Well

2.3.3 The Step Potential Function

2.3.4 The Potential Barrier

2.4 Extensions of the Wave Theory to Atoms

2.4.1 The One-Electron Atom

2.4.2 The Periodic Table

2.5 Summary

Problems

CHAPTER 3

Introduction to the Quantum Theory of Solids

Preview

3.1 Allowed and Forbidden Energy Bands

3.1.1 Fromation of Energy Bands

3.1.2 The Kronig-Penney Model

3.1.3 The k-Space Diagram

3.2 Electrical Conduction in Solids

3.2.1 The Energy Band and the Bond Model

3.2.2 Drift Current

3.2.3 Electron Effective Mass

3.2.4 Concept of the Hole

3.2.5 Metals,Insulators,and Semiconductors

3.3 Extension to Three Dimensions

3.3.1 The k-Space Diagrams of Si and GaAs

3.3.2 Additional Effective Mass Concepts

3.4 Density of States Function

3.4.1 Mathematical Derivation

3.4.2 Extension to Semiconductors

3.5 Statistical Mechanics

3.5.1 Statistical Laws

3.5.2 The Fermi-Dirac Probability Function

3.5.3 The Distribution Function and the Fermi Energy

3.6 Summary

Problems

CHAPTER 4

The Semiconductor in Equilibrium

Preview

4.1 Charge Carriers in Semiconductors

4.1.1 Equilibrium Distribution of Electrons and Holes

4.1.2 The no and po Equations

4.1.3 The Intrinsic Carrier Concentration

4.1.4 The Intrinsic Fermi-Level

Position

4.2 Dopant Atoms and Energy Levels

4.2.1 Qualitative Description

4.2.2 Ionization Energy

4.2.3 Group III-V Semiconductors

4.3 The Extrinsic Semiconductor

4.3.1 Equilibrium Distribution of Electrons and Holes

4.3.2 The nopo Product

4.3.3 The Fermi-Dirac Integral

4.3.4 Degenerate and Nondegenerate Semiconducors

4.4 Statistics of Donors and Acceptors

4.4.1 Probability Function

4.4.2 Complete Ionization and Acceptors

4.5 Charge Neutrality

4.5.1 Compenated Semiconductors

4.5.2 Equilibrium Electron and Hole Concentrations

4.6 Position of Fermi Energy Level

4.6.1 Mathematical Derivation

4.6.2 Variation of Ep with Doping Concentration and Temperature

4.6.3 Relevance of the Fermi Energy

4.7 Summary

Problems

CHAPTER 5

Carrier Transport Phenomena

Preview

5.1 Carrier Drift

5.1.1 Drift Current Density

5.1.2 Mobility Effects

5.1.3 Conductivity

5.1.4 Velocity Saturation

5.2 Carrier Diffusion

5.2.1 Diffusion Curent Density

5.2.2 Total Current Density

5.3 Graged Impurity Distribution

5.3.1 Induced Electric Fild

5.3.2 The Einstein Relation

5.4 The Hall Effect

5.5 Summary

Problems

CHAPTER 6

Nonequilibrium Excess Carriers in Semiconductors

Preview

6.1 Carrier Generation and Recombination

6.1.1 The Semiconductor in Equilibrium

6.1.2 Excess Carrier Generation and Recombination

6.2 Characteristics of Excess Carriers

6.2.1 Comtinuity Equations

6.2.2 Time-Dependent Diffusion Equations

6.3 Ambipolar Transport

6.3.1 Derivation of the Ambipolar Transport Equation

6.3.2 Limits of Extrinsic Doping and Low Injection

6.3.3 Applications of the Ambipolar Transport Equation

6.3.4 Dielectric Relaxation Time Constant

6.3.5 Haymes-Shockley Experiment

6.4 Quasi-Fermi Energy Levels

6.5 Excess-Carrier Lifetime

6.5.1 Shockley-Read-Hall Theory of Recombination

6.5.2 Limits of Extrinsic Doping and Low Injection

6.6 Surface Effects

6.6.1 Surface States

6.6.2 Surface Recombination Velocity

6.7 Summary

Problems

CHAPTER 7

The pn Junction

Preview

7.1 Basic Structure of the pn Junction

7.2 Zero Applied Bias

7.2.1 Built-in Potential Barrier

7.2.2 Electric Field

7.2.3 Space Charge Width

7.3 Reverse Applied Bias

7.3.1 Space Charge Width and Electric Field

7.3.2 Junction Capacitance

7.3.3 One-Sided Junctions

7.4 Nonuniformly Doped Junctions

7.4.1 Linearly Graded Junction

7.4.2 Hyperabrupt Junctions

7.5 Summary

Problems

CHAPTER 8

The pn Junction Diode

Preview

8.1 pn Junction Current

8.1.1 Qualitative Description of Charge Flow in a pn Junction

8.1.2 Ideal Current-Voltage Relationship

8.1.3 Boundary Conditions

8.1.4 Minority Carrier Distribution

8.1.5 Ideal pn Junction Current

8.1.6 Summary of Physics

8.1.7 Temperature Effects

8.1.8 The"Short"Diode

8.2 Small-Signal Model of the pn Junction

8.2.1 Diffusion Resistance

8.2.2 Small-Signal Admittance

8.2.3 Equivalent Circuit

8.3 Generation-Recombination Currents

8.3.1 Reverse-Bias Generation Current

8.3.2 Forward-Bias Recambination Current

8.3.3 Total Forward-Bias Current

8.4 Junction Breakdown

8.5 Charge Storage and Diode Transients

8.5.1 The Turn-off Transient

8.5.2 The Turn-on Transient

8.6 The Tunnel Diode

8.7 Summary

Problems

CHAPTER 9

Metal-Semiconductor and Semiconductor Heterojunctions

Preview

9.1 The Schottky Barrier Diode

9.1.1 Qualitative Characteristics

9.1.2 Ideal Junction Properties

9.1.3 Nonideal Effects on the Barrier Height

9.1.4 Current-Voltage Relationship

9.1.5 Comparison of the Schottky Barier Diode and the pn Junction Diode

9.2 Metal-Semiconductor Ohmic Contacts

9.2.1 Idal Nonrectifying Barriers

9.2.2 Tunneling Barrier

9.2.3 Specific Cotact Resistance

9.3 Heterojunctions

9.3.1 Heterojunction Materials

9.3.2 Energy-Band Diagrams

9.3.3 Two-Dimensional Electron Gas

9.3.4 Equilibrium Electrostatics

9.3.5 Current-Voltage Characteristics

9.4 Summary

Problems

CHAPTER 10

The Bipolar Transistor

Preview

10.1 The Bipolar Transistor Action

10.1.1 The Basic Principle of Operation

10.1.2 Simplified Transistor Current Relations

10.1.3 The Modes of Operation

10.1.4 Amplification with Bipolar Transistors

10.2 Minority Carrier Distribution

10.2.1 Forward-Active Mode

10.2.2 Other Modes of Operation

10.3 Low-Frequency Common-Base Current Gain

10.3.1 Contributing Factors

10.3.2 Mathematical Derivation of Current Gain Factors

10.3.3 Summary

10.3.4 Expmle Calculations of the Gain Factors

10.4 Nonideal Effects

10.4.1 Base Width Modulation

10.4.2 High Injection

10.4.3 Emitter Bandga Narrowing

10.4.4 Current Crowding

10.4.5 Nonuniform Base Doping

10.4.6 Breakdown Voltage

10.5 Equivalent Circuit Models

10.5.1 Ebers-Moll Model

10.5.2 Gummel-Poon Model

10.5.3 Hybrid-Pi Model

10.6 Frequency Limitations

10.6.1 Time-Delay Factors

10.6.2 Transistor Cutoff Frequency

10.7 Large-Signal Switching

10.7.1 Switching Characteristics

10.7.2 The Schottkey-Clamped Transistor

10.8 Other Bipolar Transistor Strures

10.8.1 Polysilicon Emitter BJT

10.8.2 Silicon-Germanium Base Transistor

10.8.3 Heterojunction Bipolar Transistors

10.9 Summary

Problems

CHAPTER 11

Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor

Preview

11.1 The Two-Terminal MOS Structure

11.1.1 Energy-Band Diagrams

11.1.2 Depletion Layer Thickness

11.1.3 Work Function Differences

11.1.4 Flat-Band Voltage

11.1.5 Threshold Voltage

11.1.6 Charge Distribution

11.2 Capacitance-Voltage Characteristics

11.2.1 Ideal C-V Characteristics

11.2.2 Frequency Effects

11.2.3 Fixed Oxide and Interface Charge Effects

11.3 The Basic MODFET Operation

11.3.1 MOSFET Structures

11.3.2 Current-Voltage Relationship-Concepts

11.3.3 Current-Voltage Relationship-Mathematical Derivation

11.3.4 Transconductance

11.3.5 Substrate Bias Effects

11.4 Frequency Limiations

11.4.1 Small-Signal Equivalent Circuit

11.4.2 Frequency Limitation Factors and Cutoff Frequency

11.5 The CMOS Technology

11.6 Summary

Problems

CHAPTER 12

Metal-Oxide-Semiconductor Field-Effect Transistor :Additional Concepts

Preview

12.1 Nonideal Effects

12.1.1 Subthreshold Conduction

12.1.2 Channel Length Modulation

12.1.3 Mobility Variation

12.1.4 Velocity Saturation

12.1.5 Ballistic Transport

12.2 MOSFET Scaling

12.2.1 Constant-Field Scaling

12.2.2 Threshold Voltage-First Aroximations

12.2.3 Generalized Scaling

12.3 Threshold Voltage Modifications

12.3.1 Short-Channel Effects

12.3.2 Narrow-Channel Effects

12.4 Additional Electrical Characteristics

12.4.1 Breakdown Voltage

12.4.2 The Lightly Doped Drain Transistor

12.4.3 Threshold Adjustment by Ion Implantation

12.5 Rabiation and Hot-Electron Effects

12.5.1 Radiation-Induced Oxided Charge

12.5.2 Radiation=Induced Interface States

12.5.3 Hot-Electron Charging Effects

12.6 Summary

Problems

CHAPTER 13

The Junction Field-Effect Transistor

Preview

13.1 JEET Concepts

13.1.1 Basic pn JFTE Operation

13.1.2 Basic MESFET Operation

13.2 The Device Characteristics

13.2.1 Iternal Pinchoff Votage ,Pinchoff Voltage,and Drain-to-Source Saturation Voltage

13.2.2 Ideal DC Current-Voltage Relationship-Depletion Mode JFET

13.2.3 Transconductance

13.2.4 The MESFET

13.3 Nonideal MESFET

13.3.1 Channel Length Modulation

13.3.2 Velocity Saturation Effects

13.3.3 Subthreshold and Gate Current Effects

13.4 Equivalent Circuit and Frequency Limitations

13.4.1 Small-Signal Equivalent Circuit

13.4.2 Frequency Limitation Factors and Cutoff Frequency

13.5 High Electron Mobility Transistor

13.5.1 Quantum Well Structures

13.5.2 Transistor Performance

13.6 Summary

Problems

CHAPTER 14

Optical Devices

Preview

14.1 Optical Absorption

14.1.1 Photon Absorption Coefficient

14.1.2 Electron-Hole Pair Generation Rate

14.2 Solar Cells

14.2.1 The pn Junction Solar Cell

14.2.2 Conversion Efficiency and Solar Concentration

14.2.3 Nonuniform Absorption Effects

14.2.4 The Heterojunction Solar Cell

14.2.5 Amorphous Silicon Solar Cells

14.3 Photodetectors

14.3.1 Photonductor

14.3.2 Photodiode

14.3.3 PIN Photodiode

14.3.4 Avalanche Photodiode

14.3.5 Phototransistor

14.4 Photoluminescence and Electroluminescence

14.4.1 Basic Transitions

14.4.2 Luminescent Efficiency

14.4.3 Materials

14.5 Light Emitting Diodes

14.5.1 Generation of Light

14.5.2 Internal Quantum Efficiency

14.5.3 External Quantum Efficiency

14.5.4 LED Devices

14.6 Laser Diodes

14.6.1 Stimulated Emission and Population Inversion

14.6.2 Optical Cavity

14.6.3 Threshold Current

14.6.4 Device Structures and Characteristics

14.7 Summary

Problem

CHAPTER 15

Semiconductor Power Devices

Preview

15.1 Power Bipolar Transistors

15.1.1 Vertical Power Transistor Structure

15.1.2 Power Transistor Characteristics

15.1.3 Darlington Pair Configuration

15.2 Power MOSFETs

15.2.1 Power Transistor Structures

15.2.2 Power MOSFET Characteristics

15.2.3 Parasitic BJT

15.3 Heat Sinks and Junction Temperature

15.4 The Thyristor

15.4.1 The Basic Characteristics

15.4.2 Triggering the SCR

15.4.3 SCR Turn-Off

15.4.4 Device Structures

15.5 Summary

Problems

APPENDIX A

Selected List of Symbols

APPENDIX B

System of Units, Conversion Factors,and General Constants

APPENDIX C

The Periodic Table

APPNDIX D

The Error Function

APPNDIX E

"Derivation"of Schrodinger's Wave Equation

APPNDIX F

Unit of Energy-The Electron-Volt

APPNDIX G

Answers to Selected Problems

Index