皇朝经世文续编 - 第5部分

作者: 盛康61,059】字 目 录

得八十兆八一三八九四以加本积减余数以方除之得四四五□?四为七借根即元数

 右二题旧用益实减实归除得数甚难此术似较易也

天元开诸乘方捷术八

如前诸术先求得元数数位为一借根 前得元数数位又为外根又求得递次除法 一借积减本积余再为积变方廉隅一次以除法除之得次小根以加减一借根为二借根 次小根之积减变积余再为积又变方廉隅一次以除法除之得三小根以加减二借根为三借根 三小根之积减次变积余再为积又变方廉隅一次以除法除之得四小根以加减三借根为四借根 下皆如是求至借根与元数密合而止

 按正诸乘方亦可用右术

 天元开方至第五术捷矣然依次累求位数愈多乘法亦愈繁求至十余位得借积已难再求不更难乎今用此术截段求之每次得四五位即易一式乘法不致过繁降位亦复甚易也

 算例

 假如平方负积一百亿正方十万正隅一已求得元数六一八□三?欲增求之

 以六一八□?三为外根如前又求得二二三六□?六为递次除法 六一八□?三为一借根 一借积九九九九九一八□?九减本积余八九一九□?一此术不可割零为初变积负倍前得五位加前方得二二三六□?六为初变方正一为正隅 置初变积以除法除之得□?○三九八八七有奇截用四位得□?○三九八八为次小根以加前得五位得六一八□?三三九八八为二借根 次小根借积八九一七□?四二三一八四一四四减初变积余一□?六七六八一五八五六为次变积负倍前得九位加原方得二二三六□?六七九七六为次变方正一为正隅置次变积以除法除之得□?○七四九八九有奇截用四位得□?○七四九八为三小根以加前得九位得六一八□?三三九八八七四九八为三借根 三小根借积一□?六七六六三七六八九六七四减次变积余□?○二一二八七三二九九九九六为三变积负倍前得十三位加原方得二二三六□?六七九七七四九九六为三变方正一为正隅 置三变积以除法除之得□?○九四八四八有奇截用四位得□?○九四八四为四小根以加前得十三位得六一八□?三三九八八七五七四八四为四借根即元数

 按右例所得十六位元数即理分中末之大分数也

截球解义 

徐有壬

 几何原本谓球与同径同高之圆囷其外面皮积等截球与截圆囷同高则其外面皮积亦等而不直抉其所以然检梅氏诸书亦未能明释之也蓄疑于心久矣近读李风九章注乃得其解因释之以告同志虽然以戴东原之善读古书而犹谓风此注当有脱误甚矣索解人之难也今释几何原本而风之注因是以明盖风用方今用圆其理则无二也述截球解义

设如径与高等之圆囷内容同径之圆球此球必居圆囷三之二何以明之试将圆囷横切为二则为扁圆囷内容半圆球又将扁圆囷十字直切为四则为圆囷八分之一内亦容圆球八分之一此圆囷上下两平面俱为圆之一象限其外之圆立面为囷外面皮八分之一其凑心两直立面本属囷之半径乘半高即球之半径自乘幂因球在囷内球壳因直切处切成一象限是为球半径幂内容一象限为此体之凑心立面各一

图略于此立面任意横截则皆有正弦有余弦有矢有半径

图略于此体横切之去其上截则高为余弦

图略下半截上面截成两象限一大一小

图略

此下半截上下两平行面仍为圆之一象限而上面一象限因有球壳在内界成一小象限其半径即所截之正弦正弦者句也余弦者股也半径者弦也以句为半径作一象限以股为半径作一象限两象限相并作一大象限必以弦为半径 句方股方并为弦方句圆股圆亦并为弦圆句象限股象限亦并为弦象限以方圆比例推之其理易见

然则截体上面之大象限球半径弦为半径内减球壳所界之小象限正弦句为半径所余环积必与余弦股所作小象限余弦股为半径等矣

立面一象限自高而下所截余弦至不齐也上面大象限减小象限之环积亦至不齐也而余弦为半径作象限必与此环积等此环积总为弦上象限句上象限之较此无高无下无小无大无适不然者也

又试依圆囷之底为底即球中腰大圆面以囷之半高为高即球之半径作一圆锥体而十字切之为象限锥积以象限为底此锥之底两旁之边即圆囷半径亦即球半径也

底边之半径为句锥高之半径为股是为句股相等

于此锥体任意横截为各小锥莫不为底边与高相等之锥苟以小锥高为半径作象限面莫不与小锥底相等此亦无高无下无小无大无适不然者也

小锥之高犹余弦也小锥之底犹大象限减小象限之环积也小锥之高为半径作象限必与小锥底等犹余弦为半径之象限必与环积等也

余弦之自大而递小也截高则余弦大截下则余弦小极高则几与半径等极下则几于无余弦其长短有序不乱今各以为半径作各象限层累叠积必成一象限锥与上锥等而余弦各象限即球内各象限减圆囷各象限之余也圆囷横薄切之皆相等之象限面圆球横薄切之各成正弦为半径之象限面用此知球与圆囷相较必少一锥体矣

是故一锥一球相并必与圆囷等而锥居囷三分之一球必居囷三分之二矣

是故三倍圆珠两倍圆囷其积必等

夫囷之求积以囷之外面皮积为底以半径为高作立方为囷之两倍球之求积以球之外面皮积为底以半径为高作立方为球之三倍今既知球之三倍囷之两倍为相等则两立方等矣又知两立方之高同以半径为高则其底亦必等矣

是故球之外面皮积与囷之外面皮积必等

是故球之中腰大圈乘圆径即球之外面皮积

再就前截体观之以球心为心依球壳所截上面小象限弧为界以半径周遭割之剜出一象限锥此锥以小象限为底此象限以正弦为半径以余弦为高是为内锥

再依前法将截球壳外圆囷所多之积割出准前论知此亦为一象限锥此锥以大象限球半径为半径小象限截球正弦为半径之面积较为底即余弦为半径所作之象限亦以余弦为高是为外锥内锥外锥相并为一大锥亦以余弦为高即原截体之高而以大象限半径即球半径为底即原截体之底此锥必为原截体三分之一上下两面平行体与锥体同底同高则锥必居三分之一而所余者必为三分之二矣

圆囷既剜去内锥割去外锥则所余为圆球截积空中如外面则上小下大必居圆囷三分之二

求圆囷截积者囷外面皮截积为底半径为高作立方为截囷之倍积求圆球截积者球外面皮截积为底半径为高作立方为截球之三倍积今既知截囷与截球若三与二则截囷两倍之立方与截球三倍之立方亦必等矣又知立方之高为相等之半径则其底亦不得不等矣

是故截球之外面皮积与截囷之外面皮积必等

是故截球余弦高乘球之中周大圈即截球之外面皮截积

全球之外面皮积即圆径乘周也半球之外面皮积即半径乘周也截球之外面皮积即余弦乘周也上截球盖之外面皮积即矢乘周也

球径求积术

径自乘再乘半之为第一数 四分第一数之一又二分去一三分去二为第二数 四分第二数之一又四分去一五分去二为第三数 四分第三数之一又六分去一七分去二为第四数 四分第四数之一又八分去一九分去二为第五数 诸数相并即球积

球径求球壳积术

径自乘三之为第一数 四分第一数之一又二分去一三分去二为第二数 四分第二数之一又四分去一五分去二为第三数 诸数相并即球外面皮积

截球余弦求截球积术

 识别得余弦乘周又乘半径为截球积之三倍 半径自乘内减余弦自乘余为正弦自乘求其圆面又乘余弦为截求内锥之三倍 两积相并为截球积

半径自乘三之内减余弦自乘又以余弦乘之为第一数 四分第一数之一又二分去一三分去二为第二数 四分第二数之一又四分去一五分去二为第三数 诸数相并为截球积

截球矢求截球上盖积

 识别得矢乘周又乘半径为锥积之三倍 矢乘矢径差为正弦幂求其圆面乘余弦为内锥之三倍两锥相减余为盖积

矢减半径又加全径以矢自乘乘之为第一数 四分第一数之一又二分去一三分去二为第二数 四分第二数之一又四分去一五分去二为第三数 诸数相并为截球上盖积

附录椭圜求周术

 椭圜求周无法可驭借平圜周求之则有三术以袤为径求大圜周及周较相减此项梅侣氏之术也以广为径求小圜周及周较相加此戴鄂士氏之术也余亦悟得一术以椭周为圜周求其径以求周即为椭圜之周术更直捷兼可贯三术为一术如后方

堆垛术曰一为第一数 一乘三乘第一数四除之为第二数 三乘五乘第二数九除之为第三数 五乘七乘第三数十六除之为第四数 七乘九乘第四数二十五除之为第五数 九乘十一乘第五数三十六除之为第六数 依次列之为初表

招差术曰广袤各自乘相减四而一为乘法一次乘初表第一数二次乘第二数三次乘第三数四次乘第四数五次乘第五数六次乘第六数仍依次列之为表根

招差又术曰以袤为除法一次除表根第一数三次除第二数五次除第三数七次除第四数九次除第五数十一次除第六数相并为袤径较以减袤为借圜径

堆垛又术曰三因借圜径为第一数 四分第一数之一二分去一三分去二为第二数 四分第二数之一四分去一五分去二为第三数 四分第三数之一六分去一七分去二为第四数 四分第四数之一八分去一九分去二为第五数 四分第五数之一十分去一十一分去二为第六数 递求至若干位相并为椭圜周

 右术分四层即用项氏术变通得之其图说之详已见项氏书中兹不复赘若用戴氏术通之前后三层均如旧惟第三层不同如下

招差又术曰以广为除法一次除表根第一数正三次除第二数负五次除第三数正七次除第四数负九次除第五数正十一次除第六数负递求至若干位正数相并内减负数余为广径较以加广亦为借圜径

 此即戴氏术变通得之余三层皆同前

 若移第四层为第一层先以求大圜周或以广求小圜周后依初表表根及招差又术各得周较加减所得并同即项戴二君术也

四元解序 

顾观光

四元之术至明而失其传近得徐钧卿罗茗香诸公相继阐发始有蹊径可寻然按法求之恒苦其难而不适于用约其大端盖有三焉天物相乘与地人相乘并用寄位则幂与幂乘推而上之几有无方位置之处一也剔消之法以一式截分为二左右斜正初无一定之规非熟于法者安能无误二也次式副式通式及上中下诸式之名任意作记易滋学者之疑三也繙阅之暇每欲改易算式而其道无由乙已冬海甯李君秋纫以所着四元解示余余受而读之见其以面体释四元以面体之自乘再乘定算式而相消所得直命为初消次消三消则向所难之三事均已无之作而叹曰心之神明固若是之日出而不穷乎非四元无以尽天元之变非天元无以尽少广之变而非少广之面体则亦无以定四元之位而直 发明其所以然窃为一言以蔽之曰析堆垛成广隅而已古法置太极于中心而环之以八又环之以十六其递增也皆以八堆垛之式也新法置太极于一隅而附之以三又附之以五其递增也皆以二廉隅之象也置太极于中心则上下左右动有牵制置太极于一隅则升降进退无往不宜由是四元相乘皆有位无寄位也四元为法皆可除无剔消也且其定位之图既化诸乘方为平方相乘相消之图又化诸乘方为立方反覆辨论均能假象以达难显之情何李君之心曲而善入如此李君又有弧矢启秘对数探原诸书皆本天元之术而引而伸之实发前人所未发余冀其悉合而传之以为言算者一大快也

对数探原序 

顾观光

对数探原者海甯李君秋纫所着也西人对数之表以加减代乘除用之甚易而造之甚难李君巧借诸乘尖堆以定其数又化诸乘尖堆为同高同底之平尖堆以图其形由是递加递除而诸对数指顾可得精思所到生面独开矣究其立法之原不越乎天元以虚求实之理是故尖堆之底即天元也尖堆之高即正数也平分其高为若干分依分各作横以截其积而对数之法由之以生何也对数之首位自一至九止矣一之对数为而百亿之对数亦为故尖堆下段之积不可求而总积亦不可求非无积也正以其大之极而一至九之数不足以名故反命为此盈虚消息如环无端之妙也二至十之共积为一十一至一百之共积为一一百一至一千之共积亦为一推之至于万亿无不如是此尖堆渐上渐狭渐下渐阔之理也以加倍代自乘则二段之积不得不同于三四两段之积以三因代再乘则二段之积不得不又同于五六七八四段之积此尖堆二段以上积数相等之理也尖堆之底无尽积亦与为无尽而求两对数较则所得皆为最上一段之积故二十尖堆已足当亿万尖堆之用西人不达乎此乃用正数屡次开方对数屡次折半以求之亦识流而昧其原矣易不云乎易则易知简则易从李

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页123 4567下一页末页共17页/34000条记录