历算全书 - 第1部分

作者:【暂缺】 【133,771】字 目 录

旁两线皆半径至周而止弧线剖浑幂作角形如剖角旁两弧线皆半周必复相交作角而等【如黄赤道交于二分其角相等】

角有大小量之以对角之弧其角旁两弧必皆九十度

弧线角既如瓣则其相距必两端狭而中濶其最濶处必离角九十度此处离两角各均即球上腰围大圏也故其度即为角度【如黄赤道之二分交角二十三度半即二至时距度此时黄赤道离二分各九十度乃腰围最濶处也】

大圈有极

大圏能分浑员之面幂为两则各有最中之处而相对是为两极两极距大圏四靣各九十度

如图甲辛乙为赤道大圈己为北极己为南极甲己丁己等弧线距北极各九十度距南极亦然 若己为天顶甲辛乙为地平大圏亦同如甲正北辛正东乙正南丁东北丙东南所在不同而甲乙等髙弧距天顶各九十度皆等

大圏上作十字弧线引长之必过两极两极出弧线至大圏必皆十字正交

如赤道上经圏皆与赤道正交为十字角则其圏必上过北极下过南极也然则从两极出弧线过赤道必十字正交矣

大圏之极为众角所辏

如赤道上逐度经圏皆过两极则极心一防为众角之宗【经圏之弧在赤道上成十字者本皆平行渐逺渐狭至两极则成角形之锐尖】角无论大小皆辏于极而合成一防离此一防外即成锐钝之形而皆与赤道度相应所谓量角以对弧度而角两旁皆九十度以此

如图己为北极即众角之顶鋭其所当赤道之度如乙丙等则己角为鋭角如丙庚等则己角为钝角 若己为天顶外圏为地平亦然

角度与角旁两弧之度并用本球之大圏度故量角度者以角为极

有弧线角不知其度亦不知角旁弧之度法当先求本球之九十度【其法以角旁二弧各引长之使复作角乃中分其弧即成本弧之九十度而角旁弧之度可知】以角为心九十度为界作大圏【与角旁两弧并本球大圏而其分度等】乃视角所当之弧【即角旁两九十度弧所界】于大圏上得若干度分即角度也故曰以角为极

三大圏相遇则成三角三边

此所谓弧三角形也如黄道赤道既相交于二分又有赤道经圏截两道而过之则成乙丙甲弧三角形

知图己为北极戊辛为赤道丁庚为黄道二道相交于春分成乙角又己壬为过极经圏自北极己出弧线截黄道于丙得丙乙边为黄道之一弧亦截赤道于甲成甲乙边为赤道之一弧而过极经圏为二道所截成丙甲边为经圏之一弧是为三边即又成丙角甲角合乙角为三角

弧三角不同于平三角之理

弧三角形有三角三边共六件以先有之三件求余三件与平三角同所不同者平三角形之三角并之皆一百八十度弧三角不然其三角最小者比一百八十度必盈【三边在一度以下可借平三角立算因其差甚微然其角度视半周必有微盈】但不得满五百四十度【角之极大者合之以比三半周必不能及】

平三角之边小仅咫尺大则千百万里弧三角边必在半周以下【不得满一百八十度】合三边不得满三百六十度【如满全周即成全员而不得成三角】

平三角有两角即知余角弧三角非算不知

平三角有一正角余二角必锐弧三角则否【有三正角两正角者其余角有钝有鋭或两鋭两钝或一鋭一钝不等】

平三角有一钝角余二角必锐弧三角则否【其余角或鋭或正或钝甚有三钝角者】

平三角以不同边而同角为相似形同边又同角为相等形弧三角则但有相等之形而无相似之形以同角者必同边也

平三角但可以三边求角不可以三角求边弧三角则可以三角求边【弧三角之边皆员度也初无丈尺可言故三角可以求边若干三角边各有丈尺则必有先得之边以为之例所以不同 前条言有相等之形无相似之形亦谓其所得之度相等非谓其丈尺等也】

弧三角用八线之理

平三角用八线惟用于角弧三角用八线并用于边平三角以角之八线与边相比弧三角是以角之八线与边之八线相比平三角有正角即为句股若正弧三角形实非句股而以其八线辏成句股

平三角以角求边是用弧线求直线也【有角即有弧】以边求角是用直线求弧线也然角以八线为用仍是以直线求直线也句股法也弧三角以边求角以角求边并是以弧线求弧线也而角与边并用八线仍是以直线求直线也亦句股法也【盖惟直线可成句股】所不同者平三角所成句股形即在平靣而弧三角所成句股不在弧靣而在其内外

弧三角之防线面体

测量家有防线面体弧三角备有之其所测之角即防也但其防俱在弧靣【如于浑球任指一星为所测之防即角度从兹起如太阳太阴角度并从其中心一防论之】

弧三角之边即线也但其线皆弧线【如浑球上任指两星即有距线或于一星出两弧线与他星相距即成角而角旁两线皆弧线也】

弧三角之形即靣也但其靣皆浑球上面幂之分形弧三角之所丽即浑体也剖浑员至心即成锥体而并以弧三角之形为底【详堑堵测量】

浑员内防线面体与弧三角相应

前条防线面体俱在球面可以目视器测但皆弧线难相比例【比例必用句股句股必直线故也】赖有相应之防线面惟在浑体内厯员可指虽不可以目视而可以算得弧三角之法所以的确不易也 如浑球中剖则成平员即靣也于是以球面之各防【即弧三角之各角】依视法移于平员面即浑员内相应之防也又以弧与角之八线移至平面成句股以相比例是浑员内相应之线也 又如弧三角之三边各引长之成大圏各依大圏以剖浑员即各成平员面是亦浑员内相应之面也二平员面相割成瓣之体三平员面相割成三楞锥体若又依八线横割之即成堑堵诸体是浑员体内相应之分体也此皆与弧面相离在浑员之内非剖浑员即不可见而可以算得即不啻目视而器测矣

大圏与浑员同心

球上大圏之心即浑员之心【若依各大圏剖浑员成平员面其平员心即浑员之心】若距等小圏则但以浑员之轴为心而不能以浑员心为心同心者亦同径【大圏以浑贠径为径若距等圏则但以通为径】浑体内诸线能与弧三角相应者以此【浑员体内诸线皆宗其径弧三角既以大圏相割而成必宗大圏之径径同故内外相应】弧三角之边不用小圏亦以此也【距等圏既与大圏异径则其度不齐不能成边而所作之角必非真角无从考其度分也】

弧三角视法

弧三角非图不明然图弧线于平面必用视法变浑为平

平置浑仪从北极下视则惟赤道为外周不变而黄道斜立即成撱形 其分至各经圏本穹然半员今以正视皆成员径是变弧线为直线也

立置浑仪使北极居上而从二分平视之则惟极至交圏为外周不变其赤道黄道俱变直线为员径而成辏心之角【即大距度平面角】是变弧线角为直线角也【又距等圏亦变横线而成各度正与员径平行】其赤道上逐度经圏之过黄赤道者虽变撱形而其正不变且厯算可见如在平面而与平面上之大距度正同角成大小句股比例是弧面各线皆可移于平面也故视法不但作图之用即步算之法已在其中

以上谓之正视【以黄赤道为式若于六合仪取天顶地平诸线亦同他可类推】

<子部,天文算法类,推步之属,历算全书,卷七>

以上谓之旁视【浑员上有垜叠诸线从旁侧视之庶几可见虽不能按度肖形而大意不失以显弧三角之理为用亦多】

角之矢

如图甲丙乙丁半浑员以甲戊乙弧界之则其弧面分两角为一鋭一钝以视法移此弧度于相应之平面亦一鋭一钝即分员径为大小二矢而戊丙正矢为戊甲丙鋭角之度【戊乙丙亦同】戊丁大矢为戊甲丁钝角之度【戊乙丁亦同】故得矢即得角

角之八线

如前图丙戊弧为甲锐角之度与丙庚等则丙戊之在平面者变为直线即爲甲鋭角之矢而戊巳为角之余戊庚为角之正丙辛爲角之切线己辛为角之割线皆与平面丙庚弧之八线等

丁巳戊过弧为甲钝角之度与丁乙庚过弧等则丁戊在平面者变为钝角之大矢而戊巳余戊庚正丙辛切线己辛割线并与鋭角同【平面钝角之八线与外角同用弧三角亦然】正弧斜弧之角与边分为各类

凡三角内有一正角谓之正弧三角形三角内并无正角谓之斜弧三角形

正弧三角形之角有三正角者有二正角一鋭角者有二正角一钝角者【以上种种不须用算】又有一正角两鋭角者【内分二种一种两锐角同度一种两锐角不同度】有一正角两钝角者【内分二种一种两钝角同度一种两钝角不同度】有一正角一锐角一钝角者【内分二种一种锐钝角角合之成半周一种合锐钝两角不能成半周】计正弧之角九种而用算者六也

正弧三角形之边有三边并足者【足谓足九十度】有二边足一边小者【在象限以下为小】有二边足一边大者【过象限以上为大○以上三种可不用算】有三边并小者【内分二种一种二边等一种二边不等】有二边大而一小者【内分三种一种二大边等一种二大边不等一种小边为一大边减半周之余】计正弧之边八种而用算者五也

二边俱小则余边必不能大故无二小一大之形二边俱大则余边亦不能大故无三边并大之形一边若足则余边亦有一足故无一边足之形

正弧三角形图一【计三种】

正弧三角形图二【讣三种】

以上正弧形三种有同度之边与角谓之二等边形内有己形虽无同等之邉角而有共为半周之邉角度虽不同而所用之正则同即同度也

凡邉等者角亦等后仿此

正弧三角形图三【计三种】

以上正弧形三种边角与丁戊巳三种无异但无同度之边凡正弧三角形共九种

斜弧三角形之角有三角并鋭者【内分三种一种有二角相等一种三角不相等一种三角俱等】有二角锐而一钝者【内分四种一种二锐角相等一种二锐角不相等一种钝角为一锐角减半周之余一种二锐角相等而又并为钝角减半周之余】有二角钝而一锐者【内分四种一种二钝角相等一种二钝角不相等一种锐角为一钝角减半周之余一种二钝角相等而又并为锐角减半周之余】有三角并钝者【内分三种一种有二角相等一种三角不相等一种三角相等】计斜弧之角十有四种

斜弧三角形之边有一边足二边小者【内分二种一种二小边相等一种二小边不等】有一边足二边大者【内分二种一种二大边等一种二大边不等】有一边足一边小一边大者【内分二种一种大小二边合之成半周一种合二边不能成半周】有三边并小者【内分三种一种三边不等一种二边等一种三边俱等】有二边大而一小者【内分四种一种二大边等一种二大边不等一种小边为一大边减半周之余一种二大边等而又并爲小边减半周之余】有二边小而一大者【内分四种一种二小边等一种二小边不等一种大边为一小边减半周之余一种二小边等而又并为大边减半周之余】有三边并大者【内分三种一种三边不等一种二边等一种三边俱等】计斜弧之边二十种

斜弧三角形图一【计四种】

以上斜弧形四种并三角三边同度谓之三等边形内有二等边者其一边为等边减半周之余与三等边同法【以同用正故】

斜弧三角形图二【计十二种】

以上斜弧三角形十二种并二等边形内有四种以大小二边度成半周与二等边同法【小边为大边减半周之余则同用一正】

斜弧三角形图三【计十种 厯书只九种遗一鋭二钝形】

以上斜弧三角形十种并三边不等【用算只四种】

凡斜弧三角形共二十六种

通共弧三角形三十五种【内除正弧三种不须用算实三十二种】

乙丁寅为赤道乙丙癸为黄道乙与寅为春秋分癸为夏至午癸丁辰为极至交圏午与辰为南北极午丙甲为过极经圈

丙乙为黄道距二分之度甲乙为赤道距二分之度【卯同升度】丙甲为黄赤距纬成丙乙甲三角弧形甲为正角乙春秋分角与浑员心卯角相应

癸丁弧为黄赤大距【即乙角之弧亦为夘角之弧】癸巳为乙角正卯巳其余戊丁为乙角切线戊卯其割线卯癸及夘丁皆半径成癸巳夘及戊丁夘两句股形

又午夘半径庚午为乙角余切庚夘为乙角余割成午夘庚倒句股形

丙辛为丙甲距度正丙壬为丙乙黄道正作辛壬线与丁卯平行成丙辛壬句股形

子甲为丙甲距度切线甲丑为甲乙赤道正作子丑线与丙壬平行成子甲丑句股形

酉乙为丙乙黄道切线未乙为甲乙赤道切线作酉未线与子甲平行成酉未乙句股形

前二句股形在癸丁大距弧内外【癸巳邜用正余在弧内戊丁夘用割切线出弧外】后三句股形在丙乙甲三角内外【丙辛壬在丙角用两正在浑员内子甲丑在甲角兼用正切线半在内半在外酉未乙用两切线在浑员外】

论曰此五句股形皆相似故其比

打 印】 【来源:读书之家-dushuzhijia.com】