历算全书 - 第2部分

作者:【暂缺】 【134,975】字 目 录

已上食甚分【按食甚当作复圆】已下为带食之分也若是食在晨刻者置日出分昏刻者置日入分皆与食甚分相减余为带食差也置带食差【百定六十定五】以所推日食分秒【十定五单定四】为法乘之【言十定一】得数复以所推定用分【百去六子】为法除之【不满法去一子所定有五子为十分四子为单分三子为十秒】得数去减所推日食分秒余上下两处皆为带食已见未见之分也按带食分者日出入时所见食分进退之数也假如日出分在初亏分已上是初亏在日未出前但见食甚不见亏初也日入分在初亏已上是食甚在日入后但见亏初不见食甚也又如日出分在复圆分已下是食甚在日未出前不见食甚但见复末也日入分在复圆分已下是复圆在日入后不见复末但见食甚也见食甚不见亏初是食在未出已有若干尚有见食若干带之而出其食为进也见初亏不见食甚是食在未入见有若干尚有不见食若干带之而入其食亦为进也不见食甚但见复末是食在未出前已复若干尚有见复光若干带之而出甚食为退也不见复末但见食甚是食在未入前见复若干尚有未复光若干带之而入其食亦为退也凡此日出入所带进退分秒何以知之则视其带食而出为晨刻者置日出分其带食而入为昏刻者置日入分皆以食甚分与之相减而得带食之差也假如日出分在初亏分已上其食甚分又在日出分已上则以日岀分减其食甚分其减不尽者则是日出已后距食甚之时刻也若日入分在初亏分已上其食甚分又在日入分已上则以日入分减其食甚分其减不尽者则是日入已后距食甚之时刻也又如日出分在复圆分已下其食甚分又在日出分已下则于日出分内减去食甚分其减不尽者则是日出已前距食甚之时刻也若日入分在复圆分已下其食甚分又在日入分已下则于日入分内减去食甚分其减不尽者则是日入已前距食甚之时刻也凡此带食差分用乘日食分秒又以定用分除之便知日出入时所距食甚时刻在定用分全数内占得几许即知日出入时所带食分于日食分秒全数内占得几许也以其数减食分所余分秒即是日出入前距亏初已过食分或日出入后距复末未见食分也上下两处者得数与减余两处之数已见未见之分即已复未复已食未食如后二条所列也

日有带食例

置日出入分内减去食甚分谓之已复光未复光将所推带食分录于前

晨【日未出已复光若干日已出见复光若干】昏【日未入见复光若干日已入未复光若干】

置食甚分内减去日出入分谓之见食不见食将所推带食分录于后

晨【日未出已食若干日已出见食若干】昏【日未入见食若干日已入不见食若干】按置日出入分内减去食甚分者其日出入分皆在复圆分已下也故谓之已复光未复光假如日食甚五分在日出入前其带食三分以之相减尚余二分若在晨刻是日未出前已复光三分日已出后见复光二分也若在昏刻是日未入前见复光三分日已入后未复光二分也此二端带食分皆是已复光数故录于前也其以带食分减之而余者则是未复光数故录于带食之后也置食甚分内减去日出入分者其日出入分皆在初亏分已上也故谓之见食不见食假如日食甚五分在日出入后其带食三分以之相减尚余二分若在晨刻是日未出前已食二分日已出后见食三分也若在昏刻是日未入前见食二分日已入后不见食三分也此二端带食分皆是未食数故录于后也其以带食分减之而余者则是已食数故录于带食之前也月食仿此但以日之昏为月之晨以日之晨为月之昏盖日出于晨入于昏月出于昏入于晨也其余并同

推黄道定积度法

置所推食甚入盈缩厯行定度如是盈厯者内加入天正黄道箕宿度共得为黄道定积度也如是缩厯者内加入半嵗周及天正箕宿黄道度共得为黄道定积度也按黄道定积度者逆计食甚日躔度距天正冬至日躔宿度积数也盈厯加入天正黄道箕度者是逆从天正冬至所躔宿初度积算起也缩厯复加半嵗周者缩厯本数是从夏至度起算今加入半嵗周又加入天正箕宿度是变而如盈厯亦从天正冬至箕宿初度起算也所得定积度即是今所躔宿度与箕宿初度相距逺近之数也

推食甚日距黄道宿次度法

置所推黄道定积度无论盈缩厯皆以黄道各宿次积度钤挨及减之余为食甚日躔黄道某宿次度分也按所推黄道定积度无问盈缩皆是今食甚躔度前距箕宿初度之积数也然尚未知其为黄道何宿度也故以黄道各宿积度钤取其相挨及者减之其减去者是今积度内已满其宿之度日躔已过此宿断为前宿也其不及减而余者则是前宿算外所余度分也是日躔正在此宿中未过故其积度亦未满当即以所减算外之度分断为食甚日躔某宿几度几分也假如食甚定积十度则以箕宿积度九度五九减之余○度四十一分为箕宿算外余数断为食甚日躔黄道斗宿初度四十一分也余仿此

黄道各宿次积度钤

箕九度【五九】 斗三十三度【○六】 牛三十九度【九六】女五十一度【○八】 虚六十○度【○八太】 危七十六度【○三太】室九十四度【三五太】 壁一百○三度【六九太】奎一百廿一度【五六太】娄一百三十三度【九二太】胃一百四九度【七三太】昴一百六十度【八一太】毕一百七七度【三一太】觜一百七七度【三六太】参一百八七度【六四太】井二百十八度【六七太】鬼二百廿○度【七八太】栁二百三十三度【七八太】星二百四十度【○九太】张二百五七度【八八太】翼二百七七度【九七太】轸二百九六度【七二太】角三百○九度【五九太】亢三百十九度【一五太】氐三百三十五度【五五太】房三百四一度【○三太】心三百四七度【三○太】尾三百六五度【二五太】

按黄道积度钤皆自箕初度积至其宿垜积之数也假如日躔斗二十三度四七加入箕宿九度五九则已共积得三十三度○六也又如日躔牛六度九十分如入斗二十三度四七又如入箕九度五九共积得三十九度九六也余仿此 又按凡言钤者皆豫将所算之数幷其已前之数垜积而成以便临算取用意同立成也虽然黄道不可以立钤算者当知黄道度之所由生则可以断其是非矣盖黄道积度生于其宿黄道度各宿黄道度皆生于赤道赤道三百六十五度二五七五黄道亦三百六十五度二五七五而其各宿度数不同者则以二至二分所躔不同也赤道近二至则其变黄道度也损而少赤道近二分则其变黄道度也益而多盖赤道平分天腹适当二极之中所纪之度终古不易黄道不然其冬至则近南极在赤道外二十三度九十分其夏至则近北极在赤道内亦二十三度九十分其自南而北自赤道外而入于其内也则交于春分之宿其自北而南自赤道内而出于其外也则交于秋分之宿交则斜以斜较平视赤道之度必多此处既多则二至黄道视赤道之数必少理势然也【二至赤道以敛小之度当黄道大度已详天正箕宿注】黄道之损益既系于分至分至既以嵗而差黄道积度是必毎嵗不同古人则既言之矣此所载者犹据授时厯经所测黄道之度乃至元辛巳一年之数也上考下求数十年间则皆有所不合况距今三百八十余算积差尤多安得海制此钤以尽古今之无穷乎今仍以授时厯经黄赤道差法求得天启辛酉年黄道积度如左

依授时厯经求得天启辛酉年黄道积度

天正冬至赤道箕宿四度九○

赤道四象积度

箕五度【五】 斗三十○度【七】牛三十七度【九】女四十九度【二五】 虚五十八度【二○太】 危七十三度【六○太】室九十○度【七○太】 壁九十一度【三一四三太】

右冬至后一象之度

壁七度【九九三一少】奎二十四度【五九三一少】娄三十六度【三九三一少】胃五十一度【九九三一少】昴六十三度【二九三一少】毕八十○度【六九三一少】觜八十○度【七四三一少】参九十一度【三一四三太】

右春分后一象之度

参初度【五二八太】 井三十三度【八二八太】 鬼三十六度【○二八太】栁四十九度【三二八太】 星五十五度【六二八太】 张七十二度【八七八太】翼九十一度【三一四三太】

右夏至后一象之度

翼初度【三一四三太】轸一十七度【六一四三太】角二十九度【七一四三太】亢三十八度【九一四三太】氐五十五度【二一四三太】房六十○度【八一四三太】心六十七度【三一四三太】尾八十六度【四一四三太】箕九十一度【三一四三太】

右秋分后一象之度

黄道积度

箕五度【○七】 斗二十八度【七一】 牛三十五度【六九】女四十六度【九五】 虚五十六度【○六太】 危七十二度【二○太】室九十○度【六五太】 壁九十九度【九八太】 奎一百十七度【七一太】娄一百二十九度【九三太】胃一百四五度【五四太】昴一百五六度【四八太】毕一百七二度【八二太】觜一百七二度【八七太】参一百八三度【一一太】井二百十四度【三五太】鬼二百十六度【四八太】栁二百二十九度【六五太】星二百三十六度【○四太】张二百五四度【○五太】翼二百七四度【二八大】轸二百九二度【九五太】角三百○五度【六八太】亢三百十五度【一二太】氐三百三十一度【三二太】房三百三十六度【七三太】心三百四二度【九三太】尾三百六十度【七四太】箕三百六五度【二五太】

天正冬至黄道箕宿四度五一二○

黄道各宿度

角十二度【七三】亢○九度【四四】氐十六度【二】 房○五度【四一】心○六度【二】 尾十七度【八一】箕○九度【五八】

右东方七宿七十七度三十七分

斗二十三度【六四】牛○六度【九八】女十一度【二六】虚○九度【一太】危十六度【一四】室十八度【四五】壁○九度【三三】

右北方七宿九十四度九十一分太

奎十七度【七三】娄十二度【二二】胃十五度【六一】昴一十度【九四】毕十六度【三四】觜 初度【○五】参一十度【二四】

右西方七宿八十三度一十三分

井三十一度【二四】鬼○二度【一三】栁十三度【一七】星○六度【三九】张十八度【○一】翼二十度【二三】轸十八度【六七】

右南方七宿一百○九度八十四度

黄道各宿次积度钤

箕九度【五八】 斗三十三度【二二】 牛四十○度【二】女五十一度【四六】 虚六十○度【五七太】 危七十六度【七一太】室九十五度【一六太】 壁一百○四度【四九太】奎一百二十二度【二二太】娄一百三十四度【四四太】胃一百五十度【○五太】昴一百六十度【九九太】毕一百七七度【三三太】觜一百七七度【三八太】参一百八七度【六二太】井二百十八度【八六太】鬼二百二十度【九九太】栁二百三十四度【一六太】星二百四十度【五五太】张二百五八度【五六太】翼二百七八度【七九太】轸二百九七度【四六太】角三百一十度【一九太】亢三百十九度【六三大】氐三百三十五度【八二太】房三百四一度【二四太】心三百四七度【四四太】尾三百六五度【二五太】

已上度钤据天启辛酉嵗差所在歩定俟嵗差移一度时再改歩之又按厯经有増周天加嵗差法因前所推俱依通轨故仍之

厯算全书巻二十二

<子部,天文算法类,推步之属,历算全书>

钦定四库全书

厯算全书卷二十三

宣城梅文鼎撰

厯学騈枝卷三

月食通轨

録各有食之望下数

经望全分盈缩厯全分盈缩差全分迟疾厯全分 迟疾限数 迟疾差全分加减差全分定望全分【将本日日出分推在卯时何刻望在何刻已下者退一日也 説见定朔望条夘时举例言也按其定望退一日只据小余在日出分已下断之并不必求时刻】入交泛日全分 定入迟疾厯定入迟疾限【此限与前仝者便不必书出损益分并行度○按此处损益分不言何用似总不必书出】

定限行度晨分【月入之时刻也先于复圆有带食】日出分

日入分 昏分【月出之时刻也后于初有带食】

【按晨昏分所以定更防也其带食分只用日出入分不用晨分葢晨昏日未出月则犹见昏前日已入月则已见也注误】

天正赤道度 天正黄道度交常度 交定度已上诸法皆与日食同

推夘酉前后分法

视定望小余如在二千五百分已下者就为夘前分若已上者去减半日周五千分为夘后分又如在七千五百分已下者内减去五千分为酉前分已上者去减日周一万分为酉后分

按凡夘酉前后分皆距子午言之夘前分是距子正后之分故即以小余定之夘后分是逆数午正前之距分故以小余减半日周

打 印】 【来源:读书之家-dushuzhijia.com】