数据挖掘基础教程

数据挖掘基础教程
作 者: 罗伊尔
出版社: 清华大学出版社
丛编项: 大学计算机教育国外著名教材系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 数据库存储与管理
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《数据挖掘基础教程》作者简介

内容简介

“大学计算机教育国外著名教材系列(影印版)”专题数据挖掘就是发现数据模型,以助于解释当前行为或预测将来的可能结果。本书介绍了数据挖掘的基本过程,解释了如何将数据挖掘应用于解决实际问题,从而使你能将数据挖掘技术应用于自己的实际工作中去。本书讲述了数据挖掘和知识发现的各方面内容,并着重介绍了数据挖掘模型的建立与测试,以及数据挖掘结果的解释与验证等内容。为了使读者更好地理解数据挖掘过程,在本书配套光盘中提供了一个基于MicrosoftExcel的数据挖掘工具,读者可以亲身体验数据挖掘模型的建立与测试。本书可作为相关专业的本科生教材,对需要理解数据挖掘和智能系统的专业人员也是很好的参考书。本书特点:·讲授了数据挖掘的基本理论和工作原理。·每章都包含了不少分步讲述的数据挖掘内容。·本书配套光盘中基于Excel的数据挖掘软件,为读者提供了亲身体验数据挖掘过程的学习机会。·本书以大量的商业、科学和医学数据为实例,这些数据都包含在本书配套光盘中。·每章后面都给出了本章复习题,数据挖掘项目和各种技术问题列表。·介绍了各种与数据挖掘有关的内容:数据仓库设计、基于规则的专家系统以及智能代理。

图书目录

Part I Data Mining Fundamentals

chapter 1 Data Mining:A First View

1.1 Data Mining:A Definition

1.2 What Can Computers Learn?

Three concept Views

Supervised Learing

Supervised Learing:A Decision for Tree Example

Unsupervised Clustering

1.3 Is Data Mining Appropriate for My Problem?

Data Mining or Data Query?

Data Mining vs.Data Query:An Example

1.4 Expert Systems or Data Mining?

1.5 A Simple Data Mining Process Model

Assembling the Data

The Data Warehouse

Relational Databases and Flat Files

Mining the Data

Interpreting the Results

Result application

1.6 Why Not Simple Search?

1.7 Data Mining Applications

Example Applications

Customer Intrinsic Value

1.8 chapter Summary

1.9 Key Terms

1.10 Exercises

Chapter 2 Data Mining:A closer Look

2.1 Data Mining Strategies

classification

Estimation

Prediction

Unsupervised clustering

Market Basket Ananlysis

2.2 Supervised Data Mining Database

the Credit Card Promotion Database

Production Rules

Neural Networks

Statistical Regression

2.3 Association Rules

2.4 Clustering techniques

2.5 Evaluating Performance

evaluating supervised Learner Models

Two Class Error Analysis

Evaluating Numeric Output

Unsupervised Moedl Evaluation

2.6 chapter Summary

2.7 Key Terms

2.8 Exercises

Chapter 3 Basic Data Mining Techniques

Chapter 4 An Excel-Based Data Mining Tool

Part 2 Advanced Data Mining Techniques

Chapter 8 Nerual Networks

Chapter 9 Building Nerual Networks with IDA

Chapter 10 Staticstical Techniques

Chapter 11 Specialized Techniques

Part 4:Intelligent Systems

Chapter 12 Rule-Based Systems

Chapter 13 Managing Uncertainty in Rule-Based System

Chapter 14 Intelligent Agents

Appendixes

Appendix A The iDASoftware

Appendix B Datasets for Data Mining

Appendix C Decision Tree Atrribute Selection

Appendix D Statistics for Performance Evaluation

Appendix E Excel Pivot Tables:Office 97

Bibliography

Index