深度学习全书:公式+推导+代码+TensorFlow全程案例

深度学习全书:公式+推导+代码+TensorFlow全程案例
作 者: 洪锦魁 陈昭明
出版社: 清华大学出版社
丛编项:
版权说明: 本书为出版图书,暂不支持在线阅读,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《深度学习全书:公式+推导+代码+TensorFlow全程案例》作者简介

内容简介

《深度学习全书——公式+推导+代码+TensorFlow全程案例》共有15章,分为5部分,第一篇说明深度学习的概念,包括数理基础,特点是结合编程解题,加深读者印象,第二篇说明TensorFlow的学习地图,从张量、自动微分、梯度下降乃至神经层的实践,逐步解构神经网络,第三篇介绍CNN算法、影像应用、转移学习等,第四篇则进入自然语言处理及语音识别的领域,介绍RNN/BERT/Transformer算法、相关应用等,最后,介绍了强化学习的基础知识,包括马尔可夫决策过程、动态规划、蒙特卡洛、Q Learning算法,当然,还有相关案例实践。

图书目录

暂缺《深度学习全书:公式+推导+代码+TensorFlow全程案例》目录