十七又太阳及太隂皆在最庳得总差数一分五十三秒算食甚时得八百四十二里为满景至于两径相等或太隂不甚大于太阳即无满景因气曲光内射故也
试食甚在下度距地平七十○度太隂在最庳得视差二十一分四十六秒更下二度得视差二十三分四十九秒差二分○三秒至两半径差数余一十七秒加太阳在最高从七十至下二度强所变视差度○七秒总得二十四秒即以比例算应高弧二十四分总得二度二十四分化为里得六百即地平上自中往后见满景之地也若往前设地平高七十二太隂视差一十九分四十○秒较于太隂高七十度之视差差二分○六秒至两半径差余一十四秒加太阳变视差七秒【上下加求太隂从太阳视差故】总得二十一秒因以比例算得二十分加于七十二度化为里得五百八十三即往前之满景前后相加总得一千一百八十三里乃食甚同见满景之地也依本法推算食甚距天顶愈逺得满景愈大而自其中心论前后两半径必随高下度不等如食甚距地平高四十○度在前得三度二十三分为八百四十六里【景之前应高度多查表求后景之后应高度少查表求前】在后得三度三十八分为九百○八里总七度○一分为一千七百五十四里若食高二十○度必前行一千四百八十三里即五度五十六分后行二千二百○八里即八度五十○分总三千六百九十一里为满景因视差近地平变少必度多即得变数与两径差数等径差少【或太阳在最庳或太隂距最庳畧逺】即高度进退亦少里数亦减矣
见金环之地面
太阳在最高其视径较太隂在最高之视径畧小较在中或最庳愈小无比故全食之食甚不显余光而周无金环明矣其在中距与太隂在最高之视径等虽因气可显金环然以大小之故不能毕露且气所生大小随时随处不一则亦无从可定耳自中距以下太阳视径渐大较太隂在最高至最庳即大三十○秒矣设食甚在天顶因周大一十五秒得四围去中心逺四分度之一而可见金环者约有六十二里乃全径则一百二十五里为此时所同见至先后可见之地者又不止此若食甚距天顶愈逺得金环愈大假如距四十度【高弧五十度】依前一十五秒应得二十分全径则四十余分以三十度高弧应得全径一度二十度高弧应得一度半一十○度应得四度化为里约一千里何也因视差近地平变少得度多故也若论气愈加得金环愈大因此第谷居北方设月朔半径大于望半径亦此意也总见食之地面
求满景及金环俱以日月视径为主如太隂大于太阳则生满景太阳反大即为金环此一定之理也今欲得满与缺之景防何或从见满景地面【食既是】至渐不见景地面【复圎是】即以两曜最高最庳之行求之葢日月皆在最高见食地面少皆在最庳见食地面反多【因正在高庳故倘相距渐逺其食景大小亦渐变易】一在高一在庳则见食多寡均矣论天顶全食法加日月两半径以总数查表所得数或等或小加此两数之差更加太阳视差复得总数复查表其旁所得高度即自景中心至不见食之界也【总数不正合髙度用中比例法求之】假如日月皆在最高加其半径总得三十○分一十五秒查表太隂距地最逺之方所对六十高度得三十○分○六秒较两半径总数差九秒太阳视差○一分二十七秒三数并加共得三十一分四十二秒在高度五十九及五十八间【自顶往下故】以中比例推得四十六分乃自天顶至周界得三十一度四十六分为总见食地面之半径而全径则六十三度三十二分化为里共得一万五千八百八十三使日月皆在最库两半径数并得三十二分五十○秒查表本方内得相对高度五十九依前法推得不止五十八度即见食之界距顶三十二度五十○分共六十五度四十分为里一万六千四百一十七若太阳在最高太隂在最庳总得六十四度一十八分即一万六千零七十五里使太隂在最高太阳在最庳算得六十四度五十二分为里一万六千二百一十七
若论全食在下度食愈低其景愈大但地面不全受景则人目在地面同见食之广不全依高低度何云食愈低其景愈大视日月两轮大小约等以中心与目正对皆居一直线上虽相距实逺目视之若同为一轮同在一度今欲见其两心相离不正在一线则自此地至彼地势若横行然葢高度全食前后左右皆于日月为横行愈高愈横得景亦少若全食在下度或前或后【以髙弧及同见为主前后非东西南北可定必随日月所居方并过目圏为是】多为对行而非横行愈下愈对必行之多始得其体之离惟多行故迟出景外所以食在下度愈低得景愈广矣何云不全受景见日食即因日月目并居一直线上【此论以体相对虽心不正在一直线防合亦无妨】今全食在高度或前或后行凡日月目直线可对者自正以心相对惟去离渐逺至以边相对则以见食至复圆为止若全食在下度目少进即见食渐高至两曜以边居直线上亦能尽见其复圆使目退行少许见食渐低两曜先至地平不及以边居线上因而体虽尚对而所余食分为目所不见矣纵使更退亦不得见复圆故地面所受之景乃地景【日巳没故】非日食之景耳推下度全食之景法日月两半径并与食甚高度太隂之视差顺表相减余数加太阳视差总数复查表得数等其旁所遇高度即为前行见食之界若不等以中比例求相应之高度与表两半径并加太隂视差更加太阳自食甚高度至夲总数相应高度所变视差而末所得总数必应高度即后行见食之界如日月皆在最高两半径并得三十○分一十五秒设食甚高八十○度太隂视差在此为一十○分二十九秒两
【打 印】 【来源:读书之家-dushuzhijia.com】