新法算书 - 第6部分

作者:【暂缺】 【119,340】字 目 录

周求径亦然

二系 圈之径与径若周与周子之径与径亦若母之周与周假如一圏之径为七周为二十二他圏大于元圏四倍其径二十八则其周八十八亦四倍大于元圏之周

三系 周线上方形与圏之积若八九二与七十一则盈若八八与七则朒周与他周若径与他径 周线上方与他周上方若径上方与他径上方【十二卷二题】径方与他径方若圏与圏则周方与他周方亦若圏与圏更之周之方与本圏之积若他周之方与其圏之积如设周一用一系之法则八九二一率也七十一二率也所设一三率也所得之径为二二三之七十一其容积为八九二之七十一周之方一全数也通之为八九二圏之积零数也为七十一是谓周方与圏为八九二与七十一而盈或二十二与七其径二十二之七其积为八八之七周之方一全数也通之为八八圏积为零数则周方与圏为八八与七也三题之系 设径求圏积则比例之母十四为一率子十一为二率径之方数为三率所得为圏之积而盈或三八三为一率二二三为二率径之方数为三率所得为圏之积而朒假如设径十用盈法得七八又七之四圏之容也用朒法得七八又二八三之二五七圏之容也反之设圈容求径则十一与十四若圜容与某数其方根为径

又设周求圏之容因一系之法八九二与七十一若周之方数与圏之容而盈或一八八与七若周之方数与圏之容而朒反之设圏求周则七与八八若圏容与某数其方根为周

径与周之比例古士之法如此今士别立一法其差甚微然子母之数积至二十一字为万亿亿难可施用○径一○○○○○○○○○○○○○○○○○○○○○

【大周】三一四一五九二六五三五八九七九三二三八四七

【小周】三一四一五九二六五三五八九七九三二三八四六

约之首取三字为一百之三百一十四则三倍又百之十四

再约得七之一又朒如前

论曰总之不论若干位但加一即赢减一即缩赢即外切线缩即内也皆非周也

古设周问积法曰周自之十二而一此犹是径一围三较之径七围二十二者尤疎也故不合

古设径问积法以径自乗三之四而一如设径一自之得一三之得三四而一则四之三为圏之积全数【即母数】为径上之方形则知径上之方与圏之积为四与三然前论为一四与一一而合今之四与三则所谓虚隅二五也如图甲乙设十自之为一百平分之为乙丙丁五十又平分之为丁戊乙丙三角杂形丁戊乙二角杂形各二十五二角杂形必小于三角杂形安得合乎

量撱圆法 撱圆形者斜截圆柱所成两面形也形有长短二径古士黙徳本论曰两径之中比例线为径作圏

与撱圆等则两

径为第一第三

率相乗所得方

数为第二率又同线上之正方与圏容为一四与一一今两率相乗者即中率正方之数【此比例法见几何六卷三十三题之第十增】故以两径相乗得数以一一乗之以一四除之得撱圆之积也

量圈之一分

第一图【名两半径形】

设半径及用全与全若分与分之比例 法曰以半径乗得积半之为本形积盖全周与全圈积若周之分与圈积之分如半径六十二相乗得七十

二半之三十六为本形积

第二图【名两内形】

设两两丙戊为径从心作甲乙甲丁线成甲乙丙甲丁戊各两半径形依前法各求积又甲乙丁直线形两腰

等有丁乙求其积三形积并为乙丙戊丁设形之积第三图

即第二图之半同理

第四图【名形】

有本圈径设求其积法先求半圈积次求两形之积两数相减余为设形之积如丙乙巳戊圈其径丙戊设乙丁求乙已丁之积置乙巳丁一一又七之六

圈径十二先求本全圈之周得三十七又七之五半之为十八又七之六内减设形之一一又七之六余七为丁戊乙丙两之数半之为三半丁戊也作丁甲乙甲两线因前法求丁戊乙丙两形之积得二十八又九之八又求半圈之积得五七又七之四内减两形之积二十八又九之八得二十七又六十三之四十二为设形之积若不知因丁甲乙形有丁甲乙甲两边有丁甲乙

角得丁乙边为设形之

若形大于半圈者以两之积加于半圈之积

若不知本圈之径则先求径其法丁乙半之作巳辛垂线量其度得数为法之半数自之为实而一得本圏之径【防何三卷五十五】如量己辛得一又九之五法也丁辛为四自之十六实也除之得十又九之二加己辛得十二全径也若辛己不可得量是属无法之形

第五图

设小半形如甲乙丙则以甲丙句甲

乙股各自之并而开方得乙丙成乙

丙小形有乙丙依前法求积次求

甲乙丙句股形之积并之即得【一图】若止设一直线为径之一分【甲丙也】而知

本圏之径法先求丁戊丙象限积次求

丁乙甲戊两形之积相减余为甲乙

丙形之积【二图】

若所设乙甲丙非直角而知本圏之径

法先求戊丁丙象限积次求甲乙辛句

股积盖形有甲辛两角甲乙边可得余

边即得其积末用前法求乙辛丙半

形之积内减甲乙辛句股积余为设形

之积【三图】

若乙甲丙为锐角乙辛股线在设形之内则以甲乙辛形之积加于半形积【四图】

或设本圏之径作戊乙线法以半径乗得数半之得戊乙丙形次求甲乙戊直线形之积则乙戊半径也乙甲设形之边也戊甲为丙甲与半径之较依法得积以减戊乙丙两半径形之积余为设形积【五图】

或依三角形法作乙丙线成甲乙丙三角形有甲乙甲丙两边有甲角以求乙丙余如前【六图】

若半形之边如甲乙甲丙大于半径即作乙戊线先求乙戊丙两半径形之积次求甲戊乙三边形之积并之如前若不知本圏之径则属无法形之法【七图】或依三角形法以甲乙甲丙两线及甲

角求乙丙边求积次求乙丙形之积如前法【八图】第六图【名两之形】

若知各之径者法与一形等

若设两亦设中长线则分元形为两

形 若不知本圏之径亦不知中长

线属无法之形

第七图

以分之成直线形者一成形

者三四以上各以前法量之

若为球体撱圆体圆角体之外面法见量体法中【第六卷】古法设长濶问积见长方又设长阔总数长濶较等问见句股义

量面用法

以木造矩锥平

者为盘直者为

干盘径五六寸

厚二寸面画两径辏心成直角刻成渠深五分广一分下作凿以受干也干径一寸以上长四五尺令平立者目切其盘之面干之末施鐡锸焉别具望竿数事略与干等器成先试之法于平地卓锥从一径之渠向左向右各距若干丈尺卓两竿与径为直线又从他径之渠向前向后各距若干丈尺卓两竿与径为直线次转器易径以望先立诸竿仍作直线则为如法之器第一题

直线内一防上求作垂线【防何一卷十一】

法曰设防上卓锥转器令一径合于设线次从他径卓数竿题言诸竿所作直线与元线为直角与盘上直角

第二题

直线外一防上求作垂线

法曰设防上卓一竿持器循设线上防移迁就令一径合于元线一径与望竿为直线次从防至锥下作线则元线之垂线也

凡设田形量其歩畆前法足矣然未知直线形之是否直角曲线形之是否中且高下之数非目营可得欲求其度立公法如下文总之以句股为本凡图中断线所作线也聨线元形线也边上有○卓锥之处也

三边田法从大边用器防移迁就向对

角立垂线分元形为两句股形【一图】

四边田先用器试各角是否直角直者用正方量之不

直依图

分句股

形令分

余者各

两对边为平行线用正方长方法量之【二三四图】

多边形田从大边如甲上作

甲乙垂线从大边两界如丙

如丁作丙戊丁己两垂线丁

己线上立乙辛垂线又立庚

寅己午两垂线丙戊线上立酉乙垂线是元形内有二方形七句股形量时依元设丈尺步数化大为小作图亦用元度作新立诸线各如数之并之得元形之积【五图】

若田形以曲线为边宜先

求直线形法取一线为径

径上宻宻卓锥作诸平行

线末各直角上加器成诸

长方形亦成诸三边形曲

线为边者大圏之也即依直线法量之所差甚微【六七图】

或田中为房舍林木等物所隔难作

中长线法于田外依一边作大方形

形边上向田之各角作线是元形之

外方形之内有若干句股形并诸句

股积以减方形积余为元形之积【八图】

增题 多无法形量法从田心如癸加象限邉向乙角窥丙角定乙癸丙角之度次向丁向戊向己向庚向

辛各定其癸角之度次以公量法量癸

乙癸丙等线元形内有三边形七每形

有一角两邉因法求余邉求毎形之积

并而得元形之积

中空田法先求大形之积次求空形

之积如方田一叚各边十丈中为圆

池径七丈则方形之积一百丈池之

积三十八丈半减余六十一丈半为

设形之积

求环田积用两圏之径或周以次求

大小圆积相减余为环田之积如设

环之外周为四十四内周为二十二

则大圆积一百五十四小圆积三十

八半减余一百一十五半环田之积也

变形法

其一设三角形求变为等底等积方形

凡设形求变者皆截元形之实补求形之虚也如上一图甲乙丙元形求变为丙丁戊方形其元形之大边为底法平分两腰作中线与底平行次以中线为底作对角垂线成甲乙两形从元底两端向中线各作垂线成戊丁两形则截甲实形移补交角之丁截乙实形移补交角之戊成

丁丙戊方形与元形等底等积

如二图小边为底亦平分两腰作平行中线次从上角从钝角各向中线作垂线成甲乙两句股形及丙斜角形次截甲实形移为交角之乙并丙乙实形移为交角之丁成丁戊方形如所求

如三图钝角上垂线截中线出元形之外甲戊丁己两线为等作己垂线成甲小形则截交角之乙实形移为甲并甲两实形移为交

角之丁并丁己成四边实形移为相似之戊【形并戊庚如所求】

如四图两腰甚长亦如前作中线于中线上截取庚丁壬己各形之边皆与底等而成各直角四边形又从两交截取癸形与夘等即甲与乙夘癸与夘各交角之两形各等先截取癸实形移补交角之虚夘次并夘乙作三边实形移补交角之虚甲次并甲丙作四边实形移补相似之虚壬次并壬丑作四边实形移补相似之虚丁次并丁戊作四边实形移补相似之虚己次并己寅作四边实形移补相似之虚庚次并庚辛即所求其二设一方形一线求变为他方形其边与设线等如上一图设丁戊方形求变他形其边与甲等法从乙丁边取乙丙与甲等从戊角作戊丙迤线【丙非角故不名对角】引长之与己丁之引长线遇于辛成丁辛丙三角虚形次于己戊边取

己庚与甲等次从庚作垂线成壬庚戊三角实形以此实形移补丁丙辛虚形又以戊丙迤线上形移置壬辛迤线上即成庚辛方形如所求如二图设形为斜角与上同法

若所设线甚小几倍之得为元形边则平分

元形为几形如前法变得各小形并之为一大形如所

如三图所设线大于元形边则引长己戊边为己庚与甲等作庚丁对角线成戊庚壬三

角虚形次取丁丙与壬庚等成丁辛丙实形移补壬戊庚虚形又乙壬丁实形之壬角移为庚角成庚辛角形即所求

其三设矩内形变为正方形

如图以设形之两边连为一直线求心作半圏次从两线之界防作垂线为两率之中比例线即用为设线依前法变设形为他形其边为设线

其四设多边形变为正方形

先以直线分元形为若干三边形

次依第一法变各三边形为矩内形

三任取一线为设线依上法变各矩形皆为等边形

四并各等边形成一大矩形

五依第三法求大矩形两边之中比例线成正方形

以上四法若反求之则亦反作之如一矩形求作三角形一正方形求作有比例之

矩内形是也

其五两正方形变为一正方【防何原

打 印】 【来源:读书之家-dushuzhijia.com】