| 作 者: | 尼格尼维斯基 |
| 出版社: | 机械工业出版社 |
| 丛编项: | |
| 版权说明: | 本书为公共版权或经版权方授权,请支持正版图书 |
| 标 签: | 人工智能 |
| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
preface
preface to the third edition
overview of the book
acknowledgements
1 introduction to knowledge-based intelligent systems
1.1 intelligent machines, or what machines can do
1.2 the history of artificial intelligence, or from the 'dark ages' to knowledge*based systems
1.3 summary
questions for review
references
2 rule-based expert systems
2.1 introduction, or what is knowledge?
2.2 rules as a knowledge representation technique
2.3 the main players in the expert system development team
2.4 structure of a rule*based expert system
2.5 fundamental characteristics of an expert system
2.6 forward chaining and backward chaining inference techniques
2.7 media advisor: a demonstration rule*based expert system
2.8 conflict resolution
2.9 advantages and disadvantages of rule*based expert systems
2.10 summary
questions for review
references
3 uncertainty management in rule-based expert systems
3.1 introduction, or what is uncertainty?
3.2 basic .probability theory
3.3 bayesian reasoning
3.4 forecast: bayesian accumulation of evidence
3.5 bias of the bayesian method
3.6 certainty factors theory and evidential reasoning
3.7 forecast: an application of certainty factors
3.8 comparison of bayesian reasoning and certainty factors
3.9 summary
questions for review
references
4 fuzzy expert systems
4.1 introduction, or what is fuzzy thinking?
4.2 fuzzy sets
4.3 linguistic variables and hedges
4.4 operations of fuzzy sets
4.5 fuzzy rules
4.6 fuzzy inference
4.7 building a fuzzy expert system
4.8 summary
questions for review
references
bibliography
5 frame-based expert systems
5.1 introduction, or what is a frame?
5.2 frames as a knowledge representation technique
5.3 inheritance in frame-based systems
5.4 methods and demons
5.5 interaction of frames and rules
5.6 buy smart: a frame-based expert system
5.7 summary
questions for review
references
bibliography
6 artificial neural networks
6.1 introduction, or how the brain works
6.2 the neuron as a simple computing element
6.3 the perceptron
6.4 multilayer neural networks
6.5 accelerated learning in multilayer neural networks
6.6 the hopfield network
6.7 bidirectional associative memory
6.8 self-organising neural networks
6.9 summary
questions for review
references
evolutionary computation
7.1 introduction, or can evolution be intelligent?
7.2 simulation of natural evolution
7.3 genetic algorithms
7.4 why genetic algorithms work
7.5 case study: maintenance scheduling with genetic algorithms
7.6 evolution strategies
7.7 genetic programming
7.8 summary
questions for review
references
bibliography
8 hybrid intelligent systems
8.1 introduction, or how to combine german mechanics with italian love
8.2 neural expert systems
8.3 neuro-fuzzy systems
8.4 anfis: adaptive neuro-fuzzy inference system
8.5 evolutionary neural networks
8.6 fuzzy evolutionary systems
8.7 summary
questions for review
references
9 knowledge engineering
9.1 introduction, or what is knowledge engineering?
9.2 will an expert system work for my problem?
9.3 will a fuzzy expert system work for my problem?
9.4 will a neural network work for my problem?
9.5 will genetic algorithms work for my problem?
9.6 will a hybrid intelligent system work for my problem?
9.7 summary
questions for review
references
10 data mining and knowledge discovery
10.1 introduction, or what is data mining?
10.2 statistical methods and data visualisation
10.3 principal component analysis
10.4 relational databases and database queries
10.s the data warehouse and multidimensional data analysis
10.6 decision trees
10.7 association rules and market basket analysis
10.8 summary
questions for review
references
glossary
appendix: al tools and vendors
index