皇朝经世文续编 - 第4部分

作者: 葛士浚42,017】字 目 录

兆八千余亿率为第五十四次开方数之率分其位数甚多用连比例求得率数亦有多位即第五十四次开方数之对数而布算甚繁一无量数数虽极大而仍为一不过一下有无数空位耳以为首率用连比例求末率必为单位下无数空位零一此即求对数根四率之二率数既为一可省多位乘法一次且一无量数较一兆有零为尤密也

今定一之对数为单一求对数根

法先以一开平方五次或开平方三次三乘方一次或平方一次三乘方二次皆可但取其降位易而已得折小第三十二率一七四六七八二八三二一三一七四九七为对数根之用数用数见后第三十二率以前各率为用数则降位稍难若三十二率以后皆可为用数不必定用三十二率也置用数减去首位单一以除用数得一四四三四一九二一八八六八六五三九为递次除法用数为通田除法用数减首位为通用乘法此即前所云以乘法除除法为递次除法则一次除可代一乘一除也乃以除法除单一以折小率三十二乘之得二二二一六九四六九二四九六三二六六为第一数正 除法除第一数一乘之二除之得七七一二三八六四一六七八三为第二数正 除法除第二数二乘之三除之得三五六九七一六四九二五一二二为第三数正 除法除第三数三乘之四除之得一八五八七七八二四九九八五为第四数正 除法除第四数四乘之五除之得一三二四九四四二八三为第五数正 如是递求得五九七三一七三三七四一为第六数正 三五五四六一六三一三为第七数正 二一五九四一四六为第八数正 一三三二六五三为第九数正 八三二七一为第十数正 五二五五七为第十一数正 三三四五为第十二数正 二一四为第十三数正 一四为第十四数正 一为第十五数正 乃诸正数得二三二五八五九二九九四四五七七为首率单一为中率求得末率四三四二九四四八一九三二五一八一一即对数根也

用数一七四六七八二八三二一三一七四九七

除法一四四三四一九二一八八六八六五三九

第一数二二二一六九四六九二四九六三二六六 除法除之一乘二除得

 二 七七一二三八六四一六七八三 同 二 三

 三三五六九七一六四九二五一二二 同 三 四

 四 一八五八七七八二四九九八五 同 四 五

 五一三二四九四四二八三 同 五 六

 六五九七三一七三三七四一 同 六 七

 七 三五五四六一六三一三 同 七 八

 八二一五九四一四六 同 八 九

 九 一三三二六五三 同 九 十

 十 八三二七一 同 十 十一

 十一 五二五五七 同 十一十二

 十二三三四五 同 十二十三

 十三 二一四 同 十三十四

 十四一四 同 十四十五

 十五 一

得数 首率 二三二五八五九二九九四四五七七

中率 一

末率 四三四二九四四八一九三二五一八一一

 按此即以一为本数第一率依第一术求折小第一无量数率也其第一数本为单一凡求极多率者初商恒为单一依对数例以单一下之零数为比例而截去首位故置第一数不用而竟以第二数为第一数也其以三十二乘之者缘用数系本数之折小第三十二率当于求得数后以三十二乘之为所求数而以三十二乘第一数其得数亦同也所异者求法既依第一术则第二数应以一无量数加一乘之二无量数除之而何以用一乘二除不知求极多率者无加一之差也今试以九乘方言之其率分为十其乘法十一与除法二十之比较一与二之比所差尚大若两位九乘方谓九十九乘方其率分为百而一百零一与二百之比较一与二之比所差较微若三位九乘方谓九百九十九乘方其率分为千而一千零一与二千之比较一与二之比其差更微由是推之多位九乘方则其差必极微而可以不计矣且非特不计已也譬之割圆有大弧弦求析分小弧弦每数乘法有分子之减差析之愈小减差愈微若求弧则有分母无分子此减差而无之盖稍有减差则亦稍有觚棱而非真弧矣求对数根亦然必须开无穷无尽极多位九乘方此加差而无之然后求至数百千位而无不合若稍有加差则必滞于第几率而求至多位反不合矣即如开平方五十四次而所求之对数根不过十五六位若欲增求一位必须再开三四次不能如前法之求几位即得几位者以其滞于一兆八千余亿率也然则一乘二除二乘三除正开无穷无尽极多位九乘方之法无以名之姑名为折小第一无量数率耳

论用数 

戴煦

前言有本数求折小第一无量数率可以径求此立法也而法有所穷必须先求三十二率何也盖多率之开方初商表其数极繁惟初商单一则任折小至多率而初商实亦必仍为单一幸而求折小多率者其首位必为单一故用第一第二两术其第一数必为单一而初商实犹可知若用第三四术则初商必为二而初商实即极繁而不可求矣然即用第一二术而其中又有窒?今试以一为本数依第一术求之则以一为除法初商实一减一得九为乘法乘除法相差甚微而位不降位不降即不能递求依第二术则一除九乘位不惟不降而反升尤不能递求是窒?也夫求折小多率者其本数必须单一下有空位空位后带零数则减余数小而可求今本数一既非单一又无零数则必假一单一下有空位带零数之数以求之此用数之所由来也而求用数约有四法以本数先求折小第几率为用数其第一数以折小率若干乘之然后递求此一法也以本数首位降为单位以自二至九自一一至一九诸数累除之为用数求得数后以除法对数加之视降几位再首位加几又一法也以本数先求倍大第几率以首位降为单位为用数求得数后视降几位则首位加几然后以倍大率若干除之又一法也置本数以自二至九累乘之以首位降为单位为用数求得数后视降几位首位加几然后以乘法之对数减之又一法也然第一法取数不易而有畸零惟求对数根不得已而用之第二法亦有畸零第三法虽无畸零而不可必得盖诸数之倍大率不能辄得首位为一而下有空位也惟第四法既无畸零且可必得故求用数可以倍大率求者则用倍大率其不可用倍大率者则用借数累乘法为便也

假如以倍大率求二之用数

法以二自乘九次得一千零二十四为二之倍大第十率降三位得一二四为二之用数

假如以累乘法求七之用数

法以七用二乘之得十四又以八乘之得一百一十二又以九乘之得一千零八降三位得一八为七之用数

假如兼用倍大率及累乘法求三之用数

法以三自乘再乘得二十七为三之倍大第三率以四乘之得一百零八降二位得一八为三之用数

论借数 

戴煦

借数者自二至九共八数借为累乘之数也凡诸数择八数内之数乘之皆可得首位为一而下有空位故借数不必广求即八数而已足但由用数求得之对数必以乘法之对数加之则必先求借数之对数而借数虽有八数实止三数何也二五四八本通为一数三六九亦通为一数惟七则自为一数故有三数之对数而八数之对数已备有八数之对数而诸数之用数亦无不备矣

假如有对数根求二与四与五与八之对数

法依前求得二之用数一二四减去单一得二四为递次乘法乃以乘法乘对数根得一四二三六七五六五六七八四三凡乘法在单位下则乘得数小于原数为第一数正 乘法乘第一数一乘之二除之得一二五七六八一七八八一三七为第二数负 乘法乘第二数二乘之三除之得二一二二八九七二六一为第三数正 乘法乘第三数三乘之四除之得三六二二一二一五七为第四数负 如是递求得六九一六二四七三三为第五数正 一三八三二四九五为第六数负 二八四五五四为第七数正 五九七六为第八数负 一二七为第九数正 三为第十数负 乃诸正数得一四二五六九四八六五六六七又诸负数得一二五一一二八四六七四八一一八以负减正得一二九九九五六六三九八一一九四九为用数之对数以用数系降三位乃于首位加三得三一二九九九五六六三九八一一九四九为一千零二十四之对数以一千零二十四系二之倍大第十率乃以十除之得三一二九九九五六六三九八一一九小余四九为二之对数也

求四之对数者以四即二之倍大第二率乃以二之对数二乘之得六二五九九九一三二七九六二三八九八即四之对数

求五之对数者以二与五相乘即十乃以十之对数单一内减二之对数得六九八九七四三三六一八八五一即五之对数

求八之对数者以八即二之倍大第三率乃以二之对数三乘之得九三八九九八六九九一九四三五八四七即八之对数

用数一二四

乘法二四

第一数 一四二三六七五六五六七八四三 乘法乘之一乘二除得

 二一二五七六八一七八八一三七 同 二 三

 三二一二二八九七二六一 同 三 四

 四三六二二一二一五七 同 四 五

 五六九一六二四七三三 同 五 六

 六 一三八三二四九五 同 六 七

 七 二八四五五四 同 七 八

 八 五九七六 同 八 九

 九一二七 同 九 十

 十三

正数 一四二五六九四八六五六六七

负数 一二五一一二八四六七四八一一八

减得一二九九九五六六三九八一一九四九

首位三一二九九九五六六三九八一一九四九

加三

十除之 三一二九九九五六六三九八一一九四九 二之对数

二乘之 六二五九九九一三二七九六二三八九八 四之对数

以减六九八九七四三三六一八八五一 五之对数

单一

三乘之 九三八九九八六九九一九四三五八四七 八之对数

假如求三与六与九之对数

法依前求得三之用数一八减去单一得八为递次乘法乃以乘法乘对数根得三四七四三五五八五五二二六一四四九为第一数正 乘法乘第一数一乘之二除之得一三八九七四二三四二九四五八为第二数负 乘法乘第二数二乘之三除之得七四一一九五九一五七八一五五为第三数正 乘法乘第三数三乘之四除之得四四四七一七五四九四六八九三为第四数负 如是递求得二八四六一九二三一六六一为第五数正 一八九七四六一五四四四为第六数负 一三一一一六四八七六为第七数正 九一七八一五四一为第八数负 六四七六六六八七为第九数正 四六六三二一为第十数负 三三九一四二为第十一数正 二四八七为第十二数负 一八三七为第十三数正 一三六为第十四数负 一为第十五数正 一为第十六数负乃 诸正数得三四八一七九六四七六九七二一五二又诸负数得一三九四二八五八三七四七五一四以负减正得三三四二三七五五四八六九四九七一二为用数之对数以用数系降二位于乃首位加二得二三三四二三七五五四八六九四九七一二为一百零八之对数以系借四乘再减四之对数得一四三一三六三七六四一五八九八七三一一四为二十七之对数以二十七系三之倍大第三率乃以三除之得四七七一二一二五四七一九六六二四三七一即三之对数也

求六之对数者以二三相乘即六乃以二之对数加三之对数得七七八一五一二五三八三六四三六三二即六之对数

九之对数者以九系三之倍大第二率乃以三之对数二乘之得九五四二四二五九四三九三二四八七四二即九之对数

用数一八

乘法八

第一数 三四七四三五九八五五二二六一四四九 乘法乘之一乘二除得

 二 一三八九七四二三四二九四五八 同 二 三

 三 七四一一九五九一五七八一五五 同 三 四

 四四四四七一七五四九四六八九三 同 四 五

 五 二八四六一五二三一六六一 同 五 六

 六一八九七四六一五四四四 同 六 七

 七 

打 印】 【来源:读书之家-dushuzhijia.com】

首页上一页678910 1112下一页末页共12页/24000条记录