Python程序设计

Python程序设计
作 者: 张雪萍 刘鹏 张燕 唐万梅 景雪琴
出版社: 电子工业出版社
丛编项:
版权说明: 本书为出版图书,暂不支持在线阅读,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  张雪萍,女,博士,教授,教育部新世纪优秀人才支持计划入选者,河南省高校科技创新人才支持计划入选者,河南省高校优秀青年骨干教师,河南省教育厅学术技术带头人,全国高等学校计算机教育研究会理事。主要研究方向包括空间数据挖掘与信息共享、智能信息处理技术、数据库版权保护、软件测试等。近年来,主持承担并完成河南省自然科学基金研究项目、河南省科技攻关研究项目等8项,参与完成国家“八五”、“十五”科技攻关项目2 项,参与完成省级鉴定项目6项。目前主持承担教育部新世纪优秀人才计划、教育部空间数据挖掘与信息共享重点实验室开放基金、河南省高校科技创新人才计划等在研项目5项。

内容简介

《Python程序设计》是全面、系统学习和运用SolidWorks 2018软件的快速入门、进阶与精通书籍,全书共18章,从基础的SolidWorks 2018安装和使用方法开始讲起,以循序渐进的方式详细讲解了SolidWorks 2018的软件配置、二维草图设计、零件设计、装配设计、工程图设计、曲面设计、钣金设计、焊件设计、模型的外观处理与渲染、运动仿真及动画设计、有限元结构分析和各个模块大量的实际综合应用案例等。《Python程序设计》讲解所使用的模型和应用案例覆盖了汽车、工程机械、电子、航空航天、家电、日用消费品、玩具等不同行业,具有很强的实用性和广泛的适用性。在内容安排上,书中结合大量的实例对SolidWorks 2018软件各个模块中的一些抽象的概念、命令、功能和应用技巧进行讲解,通俗易懂,化深奥为简易;《Python程序设计》的另一特色是讲述了大量一线实际产品的设计过程,这样的安排能使读者较快地进入实战状态;在写作方式上,《Python程序设计》紧贴SolidWorks 2018软件的真实界面进行讲解,使读者能准确地操作软件,提高学习效率。读者在系统学习《Python程序设计》后,能够迅速地运用SolidWorlks软件来完成复杂产品的设计、运动与结构分析等工作。《Python程序设计》可作为技术人员的SolidWorks完全自学教程和参考书籍,也可供大专院校机械类专业师生参考。

图书目录

第1章 Python基础 1

1.1 Python简介 1

1.2 Python的安装与运行 3

1.3 Python版本的选择 8

1.4 程序控制 11

1.4.1 Python赋值语句 11

1.4.2 顺序结构 18

1.4.3 选择结构 19

1.4.4 循环结构 22

1.5 绘图 27

1.5.1 创建turtle对象 27

1.5.2 turtle绘图的基础知识 29

1.5.3 利用turtle库提供的方法绘制图形 31

1.6 函数 37

1.6.1 函数的定义 37

1.6.2 函数的调用 39

1.6.3 lambda函数 42

习题 42

参考文献 43

第2章 数据类型 44

2.1 核心内置数据类型概述 44

2.2 数字类型声明及基本运算 47

2.2.1 整型 47

2.2.2 浮点型 47

2.2.3 复数类型 47

2.2.4 数字运算符 48

2.2.5 数字类型的常用函数及math库 49

2.2.6 数字类型转换函数 51

2.2.7 浮点型精度处理 52

2.3 列表 53

2.3.1 列表基本特征 53

2.3.2 序列通用操作 55

2.3.3 可变序列及列表通用操作(一) 58

2.3.4 可变序列及列表通用操作(二) 59

2.4 元组 62

2.5 range 64

2.6 哈希运算 66

2.7 字典 67

2.7.1 字典概述及声明 67

2.7.2 字典元素的访问 71

2.7.3 字典常用方法 71

2.8 字符串 74

2.8.1 字符串的声明 74

2.8.2 转义字符 76

2.8.3 字符串序列通用操作 77

2.8.4 字符串常用内置方法 78

习题 82

参考文献 83

第3章 文件 84

3.1 读写文件 84

3.1.1 文件对象声明与基本操作 84

3.1.2 编码问题 89

3.1.3 文件写入操作 90

3.1.4 列表推导式 92

3.1.5 关闭文件 94

3.1.6 上下文语法 94

3.1.7 生成器 95

3.2 遍历目录树 97

3.3 处理Word文件 102

3.3.1 Python-docx库 102

3.3.2 利用Python-docx库读Word文件 102

3.3.3 利用docx创建Word文件 104

3.4 处理.pdf文件 105

3.5 处理压缩文件 107

习题 111

参考文献 112

第4章 程序调试 113

4.1 异常 113

4.2 断言 127

4.3 日志 131

4.4 调试器 138

习题 144

参考文献 144

第5章 面向对象程序设计 146

5.1 面向对象程序技术的基本概念 146

5.2 类的定义和对象 148

5.3 构造函数和析构函数 150

5.4 类属性和实例属性 151

5.5 类的方法 152

5.5.1 类方法 152

5.5.2 实例方法 152

5.5.3 静态方法 152

5.5.4 类的特殊方法 154

5.6 类的继承性 160

5.6.1 单一继承 160

5.6.2 多重继承 162

5.7 类的多态性 164

习题 164

参考文献 165

第6章 连接数据源 166

6.1 导入CSV数据 166

6.1.1 CSV数据的格式 166

6.1.2 Python读取CSV文件 167

6.1.3 Python写CSV文件 169

6.2 导入Excel数据 170

6.2.1 Python读取Excel文件 171

6.2.2 Python写Excel文件 171

6.3 导入JSON数据 172

6.3.1 JSON数据的格式 172

6.3.2 Python解码JSON数据 172

6.3.3 Python编码JSON数据 173

6.3.4 Python处理JSON数据文件 174

6.4 访问数据库 175

6.4.1 数据库的查询操作 177

6.4.2 数据库的插入操作 178

6.4.3 数据库的删除操作 178

6.4.4 数据库的修改操作 179

习题 179

参考文献 180

第7章 网络爬虫 181

7.1 网络爬虫工作的基本原理 181

7.1.1 网页的概念 181

7.1.2 网络爬虫的工作流程 182

7.1.3 Python与网络爬虫 183

7.2 网页内容获取――requests库 183

7.2.1 requests对象 184

7.2.2 response对象 184

7.3 网页内容解析――BeautifulSoup 库 185

7.3.1 BeautifulSoup 库概述 185

7.3.2 beautifulsoup4 库常用方法和Tag节点 187

7.4 正则表达式 188

7.4.1 正则表达式概念 188

7.4.2 正则表达式元字符介绍 190

7.4.3 正则表达式的常用函数介绍 194

7.5 实战:热门电影搜索 195

7.6 实战:大数据相关论文文章标题采集 196

7.7 实战:全国空气质量爬取 198

习题 199

参考文献 200

第8章 数据挖掘 201

8.1 Python常用数据分析工具 201

8.1.1 Numpy 201

8.1.2 Scipy 202

8.1.3 pandas 202

8.1.4 Scikit-Learn 203

8.2 数据预处理 204

8.2.1 数据清理 204

8.2.2 数据集成 205

8.2.3 数据变换 206

8.2.4 Python数据预处理 206

8.3 分类与预测 210

8.3.1 特征选择 210

8.3.2 性能评估 210

8.3.3 实现过程 212

8.3.4 分类与预测的常用方法 213

8.4 聚类分析 235

8.4.1 聚类分析定义 235

8.4.2 聚类分析评价标准 235

8.4.3 数据相似度度量 236

8.4.4 聚类分析的常用方法 237

8.5 实战:信用评估 247

8.5.1 数据加载及说明 247

8.5.2 数据预处理 248

8.5.3 划分数据集 249

8.5.4 模型建立及参数调优 250

8.5.5 模型测试及分析 252

8.6 实战:影片推荐系统 255

8.6.1 推荐系统 255

8.6.2 python-recsys简介 256

8.6.3 影片推荐 256

习题 258

参考文献 258

第9章 自然语言处理 260

9.1 Python 常用自然语言处理工具 260

9.1.1 Python自然语言处理工具包NLTK 260

9.1.2 Python中文处理工具jieba 260

9.1.3 Python语法解析器PLY 261

9.2 文本处理 261

9.2.1 文本获取 261

9.2.2 文本表示 262

9.2.3 文本特征词提取 263

9.3 词法分析 268

9.3.1 分词 268

9.3.2 词性标注 270

9.3.3 命名实体识别 271

9.3.4 去停用词 272

9.3.5 中文分词实战 275

9.4 语法分析 277

9.4.1 语法分析简介 277

9.4.2 语法树 277

9.4.3 语法分析算法 278

9.4.4 语法分析示例 280

9.5 实战:搜索引擎 282

习题 290

参考文献 291

第10章 数据可视化 292

10.1 用Pillow操作图像 292

10.1.1 图像的基本知识 292

10.1.2 图像处理中常用的模块和函数 293

10.1.3 案例介绍 296

10.2 用Matplotlib绘图 298

10.2.1 Matplotlib常用函数介绍 299

10.2.2 折线图的函数定义及属性说明 299

10.2.3 案例介绍 300

10.3 调用Echarts 308

习题 310

参考文献 310

第11章 Web和移动应用 311

11.1 Web框架Django 311

11.1.1 Django简介 311

11.1.2 Web框架 311

11.1.3 MVC和MTV模式 312

11.1.4 Django的安装 313

11.2 Python Web开发 314

11.2.1 创建项目 314

11.2.2 Django 模板 316

11.2.3 Django 模型 318

11.2.4 Django Admin管理工具 323

11.2.5 Django Nginx+uwsgi 安装配置 330

11.3 Python移动应用开发 333

11.3.1 Python Kivy 333

11.3.2 Python 移动应用开发 334

11.3.3 基于Python开发2048游戏 335

习题 340

参考文献 341

第12章 与云结合 342

12.1 阿里云 342

12.1.1 阿里云架构 342

12.1.2 CLI Python 版 344

12.2 腾讯云 350

12.2.1 腾讯云总体架构 350

12.2.2 腾讯云Python访问 351

12.3 百度云 354

12.3.1 百度云架构 355

12.3.2 BAE Python部署 357

12.4 万物云 359

12.4.1 功能及应用 360

12.4.2 数据服务及访问 360

12.5 环境云 366

12.5.1 功能服务 366

12.5.2 应用开发数据接口 366

习题 369

参考文献 369