深度学习经典教程(pytorch版 套装共2册)

深度学习经典教程(pytorch版 套装共2册)
作 者: Ian Goodfellow Yoshua Bengio Aaron
出版社: 人民邮电出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  《深度学习》 作者简介Ian Goodfellow,谷歌公司(Google) 的研究科学家,2014 年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。Ian Goodfellow 在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓 越。Yoshua Bengio,蒙特利尔大学计算机科学与运筹学系(DIRO) 的教授,蒙特利尔学习算法研究所(MILA) 的负责人,CIFAR 项目的共同负责人,加拿大统计学习算法研究主席。Yoshua Bengio 的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。Aaron Courville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA 实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。Aaron Courville 主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI 相关任务方面也有所研究。中文版审校者简介张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。 译者简介赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。 《动手学深度学习(PyTorch版)》 作者简介:阿斯顿.张(Aston Zhang),亚马逊资深科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习和自然语言处理的研究,荣获深度学习国际顶级学术会议ICLR杰出论文奖、ACM UbiComp杰出论文奖以及ACM SenSys最佳论文奖提名。他担任过EMNLP领域主席和AAAI资深程序委员。扎卡里.C. 立顿(Zachary C. Lipton),美国卡内基梅隆大学机器学习和运筹学助理教授,并在海因茨公共政策学院以及软件和社会系统系担任礼节性任命。他领导着近似正确机器智能(ACMI)实验室,研究涉及核心机器...

内容简介

9787115461476 深度学习 168.00 9787115600820 动手学深度学习(PyTorch版) 109.80《深度学习》 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络——多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代数、微分和概率等基础知识。

图书目录

暂缺《深度学习经典教程(pytorch版 套装共2册)》目录