| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
第 1 章 PyTorch和神经网络 001
1.1 PyTorch入门 001
1.2 初试PyTorch神经网络 018
1.3 改良方法 043
1.4 CUDA基础知识 054
第 2 章 GAN初步 064
2.1 GAN的概念 064
2.2 生成1010格式规律 072
2.3 生成手写数字 090
2.4 生成人脸图像 117
第 3 章 卷积GAN和条件式GAN 140
3.1 卷积GAN 140
3.2 条件式GAN 166
3.3 结语 176
附录A 理想的损失值 178
A.1 MSE损失 178
A.2 BCE损失 179
附录B GAN学习可能性 186
B.1 GAN不会记忆训练数据 186
B.2 简单的例子 187
B.3 从一个概率分布中生成图像 188
B.4 为图像特征学习像素组合 189
B.5 多模式以及模式崩溃 190
附录C 卷积案例 191
C.1 例1: 卷积,步长为1,无补全 191
C.2 例2: 卷积,步长为2,无补全 192
C.3 例3: 卷积,步长为2,有补全 193
C.4 例4: 卷积,不完全覆盖 194
C.5 例5: 转置卷积,步长为2,无补全 194
C.6 例6: 转置卷积,步长为1,无补全 196
C.7 例7: 转置卷积,步长为2,有补全 197
C.8 计算输出大小 197
附录D 不稳定学习 199
D.1 梯度下降是否适用于训练GAN 199
D.2 简单的对抗案例 199
D.3 梯度下降并不适合对抗博弈 203
D.4 为什么是圆形轨迹 204
附录E 相关数据集和软件 205
E.1 MNIST数据集 205
E.2 CelebA数据集 205
E.3 英伟达和谷歌 206
E.4 开源软件 206