算法既成之后或以竹或以铜别为黄钟之管依前冬至气应管长如前分作九十分乃取其分为凖计三分三厘八毫四丝四忽万分忽之五千六百四十五以合孔径乃取子糓秬黍【汉书师古注曰子糓犹言糓子秬即黒黍也】或大者或中者或小者各以一黍凖一分累九十黍以审其管之长而实千二百黍于中以审其管之广必其所累之黍与其所实之黍大小一同而所累之数与所实之数各无余欠则与古人造律之法无不合矣如此则围长面羃与夫空围内积实自然无不谐防特径数自八毫以下非可细分而算法不容不然故其制造之际非有上工如离娄之明公输之巧师旷之聪弗能为已制造黄钟既成其从长羃积周径皆如前法则黄钟之体由是立矣度量权衡可于此而受法十一律可于此而相生又所以为黄钟之妙用也今先具度量权衡之法于下又可以交相审验黄钟律管之长阔焉
审度第九【以新书本原第十一章定】
度者分寸尺丈引所以度长短也生于黄钟之长以前黄钟管长所累秬黍九十枚度之一黍为一分【凡黍实于管中则十三黍三分黍之一而满一分积九十分长则容千有二百黍矣其长与广必相符也】十分为寸十寸为尺十尺为丈十丈为引数始于一终于十者天地之全数也律未成之前有是数而未见律成而后数始得以形焉度之成在律之后度之数在律之前故律之长短围径以度之寸分之数而定焉
嘉量第十【以新书本原第十二章定】
量者龠合升斗斛所以量多少也生于黄钟之容以其管内所容秬黍一千二百实其龠以井水凖其槩【孟康曰井水清清则平也】以度数审其容【一龠积八百一十分】合龠为合【两龠也积一千六百二十分】十合为升【二十龠也积一万六千二百分】十升为斗【百合二百龠也积十六万二千分】十斗为斛【二千龠千合百升也积一百六十二万分】
谨权衡第十一【以新书本原第十三章定】
权衡者铢两斤钧石所以权轻重也生于黄钟之重以其管内所容秬黍一千二百实其龠百黍一铢一龠十二铢二十四铢为一两【两龠也】十六两为斤【三十二龠三百八十四铢也】三十斤为钧【九百六十龠一万一千五百二十铢四百八十两也】四钧为石【三千八百四十龠四万六千八十铢一万九千二百两也】
胡安定曰黄钟管长九十黍之广积九寸度之所由起也容千二百黍积八百一十分量之所由起也重十有二铢权衡之所由起也既度量权衡皆出于黄钟之龠则黄钟之龠围径容受可取四者之法交相酧验使不失其实也【欧阳永叔曰声无形而乐有器古之作乐者知器之必有弊而声不可以言传惧夫器失而声遂亾也乃多为法以识之故求声者以律而识律者以黍自一黍之广积而为分寸一黍之多积而为龠合一黍之重积而为铢两使皆起于黄钟然后律度量权衡相用为表里使得律者可以制度量衡而度量衡亦可以制律用其长短多少轻重以相参考四者既同而声必至声至而乐可作 蔡九峯曰黄钟之长九寸以之审度而度长短则九十分黄钟之长一为一分以之审量而量多少则其管容子谷秬黍中者一千二百以为龠而两龠为合以之平衡而权轻重则所容千二百黍其重十二铢两龠则二十四铢为两此黄钟所以为万事根本也】
黄钟律寸九分十分法第十二【以新书本原第二章及彭氏律法第八章参定】
律寸九分十分图
如上章度量权衡之法皆生扵黄钟之管则黄钟之管围径容受可以参校审验而无差矣乃取所造黄钟之管分为九寸寸作九分分作九厘厘作九毫毫作九丝作九忽以为十一律相生之法【凢律吕相生寸分厘毫丝忽之法并以九为度】其分数以下虽别以九纪数然只是此律也故蔡氏曰径围之分以十为法者天地之全数也相生之分厘毫丝以九为法者因三分损益而立也全数者即十而取九相生者约十而为九即十而取九者体之所以立约十而为九者用之所以行【盖地之数极于十十者隂数也造化之体所以立也天之数极扵九九者阳数也造化之用所以行也】体者所以定中声用者所以生十一律也
彭氏曰诸家言黄钟周径数各有差互而黄钟管又有九分寸有十分寸九分寸则通一管为八十一分十分寸则通一管为九十分管与寸虽无异而分则有阔狭不同不知先儒论黄钟周径分数者指言何分故今先以十分之分算出黄钟周径的数既如前章所载矣因复用八十一分之分度之得圆周九分五厘一毫五丝四忽强径长三分□□五毫一丝四忽强亦不止如先儒所言径三分围九分也
黄钟律本三歴十二辰法第十三【以新书本原第二章证辨第三章参定】
子 一 黄钟之律
辰起于子数起于一子之一为黄钟之律者乃声气之元而具十二辰之全体者也故置一而以三歴十二辰则各得黄钟之一体以为分寸厘毫丝之法与数也至亥而得十七万七千一百四十七是为黄钟之实凡分寸厘毫丝之法与数皆以此数乗除而得之详具下文
丑 三【三其子之一也】 黄钟丝法
其法以三为一丝以此丝法三归黄钟十七万七千一百四十七之数则得五万九千□□四十九为丝数【其丝法与丝数自然相符余仿此】
寅 九【三其丑之三也】 黄钟寸数
其寸数共九以黄钟十七万七千一百四十七之数九归之则得一万九千六百八十三为寸法【其寸数又与寸法自相符余仿此】
卯 二十七【三其寅之九也】 黄钟毫法
其法以二十七为一毫以此毫法归除黄钟十七万七千一百四十七之数则得六千五百六十一为毫数
辰 八十一【三其卯之二十七也】 黄钟分数
其分数共八十一以黄钟十七万七千一百四十七之数归除之则得二千一百八十七为分法
已 二百四十三【三其辰之八十一也】 黄钟厘法
其法以二百四十三为一厘以此厘法归除黄钟十七万七千一百四十七之数则得七百二十九为厘数
午 七百二十九【三其已之二百四十三也】 黄钟厘数
其厘数共七百二十九以黄钟十七万七千一百四十七之数归除之则得二百四十三为厘法
未 二千一百八十七【三其午之七百二十九也】 黄钟分法其法以二千一百八十七为一分以此分法归除黄钟十七万七千一百四十七之数则得八十一为分数
申 六千五百六十一【三其未之二千一百八十七也】 黄钟毫数其毫数共六千五百六十一以黄钟十七万七千一百四十七之数归除之则得二十七为毫法
酉 一万九千六百八十三【三其申之六千五百六十一也】黄钟寸法其法以一万九千六百八十三为一寸以此寸法除黄钟十七万七千一百四十七之数则得九为寸数
戌 五万九千□□四十九【三其酉之一万九千六百八十三也】黄钟丝数其丝数共五万九千□□四十九以黄钟十七万七千一百四十七之数归除之则得三为丝法
亥 十七万七千一百四十七【三其戌之五万九千四十九也】黄钟之实置子之一而以三歴十二辰至亥而得此数是为黄钟之实所以统体十二辰之全数盖与子之一相为首尾故凡黄钟寸分厘毫丝之法与数皆以此数乗除而得之若由此数而三分损益之又所以逓生十一律也详见下章
蔡氏曰黄钟九寸以三分为损益故以三歴十二辰得一十七万七千一百四十七为黄钟之实其十二辰所得之数在子寅辰午申戌六阳辰为黄钟寸分厘毫丝之数在亥酉未己卯丑六阴辰为黄钟寸分厘毫丝之法其寸分厘毫丝之法皆用九数故九丝为毫九毫为厘九厘为分九分为寸九寸为黄钟由是三分损益以生十一律焉
又曰按淮南子谓置一而十一三之积十七万七千一百四十七为黄钟大数即律书所谓置一而九三之以为寸法者其术一也【彭氏曰史记律书曰置一而九三之以为法实如法得长一寸凡得九寸命曰黄钟之律按汉志太极元气函三为一三者天地人也一即天也二则兼天与地三则参天地与人故元气之动始于子一而即巳具三三之于丑得三三之于寅得九三之于卯得二十七三之于辰得八十一三之于巳得二百四十三三之于午得七百二十九三之于未得二千一百八十七三之于中得六千五百六十一三之于酉得一万九千六百八十三三之于戌得五万九千四十九三之于亥得十七万七千一百四十七此元气运行于十二辰用三施化其自然之数有如此也黄钟居子位其忽数亦始于一凡十一次三之得十七万七千一百四十七忽与亥数合此即是黄钟一律从长忽数所谓实也既得实数乃置一忽之数凡九次三之得万九千六百八十三忽与酉数合以此求黄钟从长寸数此即所谓置一而九三之以为法也以法除实每万九千六百八十三得一寸凡九次除之而实数尽适得九寸此即所谓实如法得长一寸凡得九寸命曰黄钟之律也】夫置一而九三之既为寸法则七三之为分法五三之为厘法三三之为毫法一三之为丝法从可知矣律书独举寸法者盖已于生钟分内黙具律寸分厘毫丝之法而又于此律数之下指其大者以明凡例也一三之而得三三三之而得二十七五三之而得二百四十三七三之而得二千一百八十七九三之而得一万九千六百八十三故一万九千六百八十三以九分之则为二千一百八十七二千一百八十七以九分之则为二百四十三二百四十三以九分之则为二十七二十七以九分之则为三三者丝法也九其三得二十七则毫法也九其二十七得二百四十三则厘法也九其二百四十三得二千一百八十七则分法也九其二千一百八十七得一万九千六百八十三则寸法也一寸九分一分九厘一厘九毫一毫九丝以之生十一律以之生五声二变上下乗除参同契合无所不通盖数之自然也顾自淮南太史公之后即无识其意者如京房之六十律虽亦用此十七万七千一百四十七之数然乃谓不盈寸者十之所得为分又不盈分者十之所得为小分以其余为强弱不知黄钟九寸以三损益数不出九苟不盈分者十之则其竒零无时而能尽虽泛以强弱该之而卒无以见强弱之为几何则其数之精微固有不可得而纪者矣至于杜佑胡瑗范蜀公等则又不复知有此数而以意强为之法故通典则自南吕而下各自为法固不可以见分厘毫丝之实故范则止用八百一十分乃是以积实生量之数为律之长而其因乗之法亦用十数故其余算亦皆弃而不録盖非有意于弃之实其重分累析至于无数之可纪故有所不得而録耳夫自丝以下虽非目力之所能分然既有其数而或一算之差则法于此而遂变不以约十为九之法分之则有终不可得而齐者故淮南太史公之书其论此也已详特房等有不察耳【司马祯史记索隠注黄钟八寸十分一云律九九八十一故云八寸十分一汉书云长九寸者九分之寸也此则古人论律以九分为寸之明验也】
<经部,乐类,律吕成书>
钦定四库全书
律吕成书卷二元 刘瑾 撰黄钟生十一律法第十四【以新书本原三章四章及证辨四章参定】
子一分 一为九寸 黄钟九寸
子之一为九寸者是以一而约黄钟之全体也余十一辰所歴之数各随其多寡约之而皆合黄钟寸分厘毫丝之本数又以各辰所约黄钟之法就约各辰之律亦皆合其律长短之数详见下文
黄钟之实十七万七千一百四十七
此即亥位所得之数乃黄钟之实也以寸法一万九千六百八十三除之得九寸是黄钟本数也若以分法二千一百八十七归除之得八十一分以厘法二百四十三归除之得七百二十九厘以毫法二十七归除之得六千五百六十一毫以丝法三归之得五万九千四十九丝亦皆黄钟本数也余十一律所得之实亦皆以此黄钟寸分厘毫丝之法除之而各得其律长短之数详见下文
丑三分二 一为三寸 林钟六寸
丑之三数约以一为三寸则共为九寸是黄钟本数也二者倍其子之一以下生林钟也【盖以阳律生吕三分而损其一即为加倍法凡律生吕皆然】防林钟所得二数约以一为三寸则共为六寸此以所约黄钟之法而约林钟寸数也
林钟之实十一万八千□□九十八
析黄钟之实为三分毎分五万九千四十九林钟于三分之内得其二故其实总得此数以寸法一万九千六百八十三除之得六是为林钟寸数也【按隔八相生与十二月律之位林钟皆在未今居丑者盖循十二辰之位与数而逓生之则六阳律皆当位自得六隂吕皆居其对冲阳不可易而隂可易也】
寅九分八 一为一寸 太簇八寸
寅之九数约以一为一寸则共为九寸亦黄钟本数也八者四倍林钟之二数以上生太簇也【隂吕生律三分而益其一即为加四倍法凡吕生律皆然】据太簇所得八数约以一为一寸则共为八寸此以所约黄钟之法而约太簇寸数也
太簇之实十五万七千四百六十四
析黄钟之实为九分毎分一万九千六百八十三太簇于九分之内得其八故其实总得此数又以林钟之实三分益一亦得此数以寸法一万九千六百八十
【打 印】 【来源:读书之家-dushuzhijia.com】