数字图像处理:MATLAB版 英文版

数字图像处理:MATLAB版 英文版
作 者: Rafael Gonzalez
出版社: 电子工业出版社
丛编项: 国外电子与通信教材系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: Matlab
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  拉菲尔·冈萨雷斯(Rafael C. Gonzalez):佛罗里达大学电气工程系博士学位,田纳西大学电气和计算机工程系教授,田纳西大学图像和模式分析实验室、机器人和计算机视觉实验室的创始人及IEEE会士。冈萨雷斯博士在模式识别、图像处理和机器人领域编写或与人合著了100多篇技术文章、两本书和4本教材,他的书已在世界500多所大学和研究所使用。理查德·伍兹(Richard E. Woods):田纳西大学电气工程系博士学位,IEEE会员.

内容简介

这是图像处理基础理论论述同以MATLAB为主要工具的软件实践方法相对照的第一本书。本书集成了冈萨雷斯和伍兹所著的《数字图像处理》一书中重要的原文材料和MathWorks公司的图像处理工具箱,MathWorks公司是公认的科学计算方面的引领者。图像处理工具箱在数字图像处理方面提供了一个稳定的、在很宽的应用领域可选择的软件工具支持集。本书的特色在于它重点强调怎样通过开发新代码来加强这些软件工具。为了得到满意的解决问题的方法,需要拓宽实验工作,这在图像处理中是很重要的。本书在介绍MATLAB编程基础知识之后,讲述了图像处理的主干内容,包括:灰度变换、线性和非线性空间滤波、频率域滤波、图像恢复与配准、彩色图像处理、小波、图像数据压缩、形态学图像处理、图像分割、区域和边界表示与描述,以及目标识别。本书可供从事信号与信息处理、计算机科学与技术、通信工程、地球物理等专业的大专院校师生学习参考。

图书目录

1 Preview

1.1 Background

1.2 What's Is Digital Image Processing?

1.3 Background on MATLAB and the Image Processing Toolbox

1.4 Areas of Image Processing Covered in the Book

1.5 The Book Web Site

1.6 Notation

1.7 The MATLAB Working Environment

1.7.1 The MATLAB Desktop

1.7.2 Using the MATLAB Editor to Create M-Files

1.7.3 Getting Help

1.7.4 Saving and Retrieving a Work Session

1.8 How References Are Organized in the Book

Summary

2 Fundamentals

Preview

2.1 Digital Image Representation

2.1.1 Coordinate Conventions

2.1.2 Images as Matrices

2.2 Reading Images

2.3 Displaying Images

2.4 Writing Images

2.5 Data Classes

2.6 Image Types

2.6.1 Intensity Images

2.6.2 Binary Images

2.6.3 A Note on Terminology

2.7 Converting between Data Classes and Image Types

2.7.1 Converting between Data Classes

2.7.2 Converting between Image Classes and Types

2.8 Array Indexing

2.8.1 Vector Indexing

2.8.2 Matrix Indexing

2.8.3 Selecting Array Dimensions

2.9 Some Important Standard Arrays

2.10 Introduction to M-Function Programming

2.10.1 M-Files

2.10.2 Operators

2.10.3 Flow Control

2.10.4 Code Optimezation

2.10.5 Interactive I/O

2.10.6 A Brief Introduction to Cell Arrays and Structures

Summary

3 Intensity Transformations and Spatial Filtering

Preview

3.1 Background

3.2 Intensity Transformation Functions

3.2.1 Function imadjust

3.2.2 Logarithmic and Contrast-Stretching Transformations

3.2.3 Some Utility M-Functions for Intensity Transformations

3.3 Histogram Processing and Function Plotting

3.3.1 Generating and Plotting Image Histograms

3.3.2 Histogram Equalization

3.3.3 Histogram Matching (Specification)

3.4 Spatial Filtering

3.4.1 Linear Spatial Filtering

3.4.2 Nonlinear Spatial Filtering

3.5 Image Processing Toolbox Standard Spatial Filters

3.5.1 Linear Spatial Filters

3.5.2 Nonlinear Spatial Filters

Summary

4 Frequency Domain Processing

Preview

4.1 The 2-D Discrete Fourier Transform

4.2 Computing and Visualizing the 2-D DFT in MATLAB

4.3 Filtering in the Frequency Domain

4.3.1 Fundamental Concepts

4.3.2 Basic Steps in DFT Filtering

4.3.3 An M-function for Filtering in the Frequency Domain

4.4 Obtaining Frequency Domain Filters from Spatial Filters

4.5 Generating Filters Directly in the Frequency Domain

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain

4.5.2 Lowpass Frequency Domain Filters

4.5.3 Wireframe and Surface Plotting

4.6 Sharpening Frequency Domain Filters

4.6.1 Basic Highpass Filtering

4.6.2 High-Frequency Emphasis Filtering

Summary

5 Image Restoration

Preview

5.1 A Model of the Image Degradation/Restoration Process

5.2 Noise Models

5.2.1 Adding Noise with Function imnoise

5.2.2 Generating Spatial Random Noise with a Specified Distribution

5.2.3 Periodic Noise

5.2.4 Estimating Noise Parameters

5.3 Restoration in the Presence of Noise Only-Spatial Filtering

5.3.1 Spatial Noise Filters

5.3.2 Adaptive Spatial Filters

5.4 Periodic Noise Reduction by Frequency Domain Filtering

5.5 Modeling the Degradation Function

5.6 Direct Inverse Filtering

5.7 Wiener Filtering

5.8 Constrained Least Squares(Regularized)Filtering

5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm

5.10 Blind Deconvolution

5.11 Geometric Transformations and Image Registration

5.11.1 Geometric Spatial Transformations

5.11.2 Applying Spatial Transformations to Images

5.11.3 Image Registration

Summary

6 Color Image Processing

Preview

6.1 Color Image Representation in MATLAB

6.1.1 RGB Images

6.1.2 Indexed Images

6.1.3 IPT Functions for Manipulating RGB and Indexed Images

6.2 Converting to Other Color Spaces

6.2.1 NTSC Color Space

6.2.2 The YCbCr Color Space

6.2.3 The HSV Color Space

6.2.4 The CMY and CMYK Color Spaces

6.2.5 The HSI Color Space

6.3 The Basics of Color Image Processing

6.4 Color Transformations

6.5 Spatial Filtering of Color Images

6.5.1 Color Images Smoothing

6.5.2 Color Images Sharpening

6.6 Working Directly in RGB Vector Space

6.6.1 Color Edge Detection Using the Gradient

6.6.2 Image Segmentation in RGB Vector Space

Summary

7 Wavelets

Preview

7.1 Background

7.2 The Fast Wavelet Transform

7.2.1 FWTs Using the Wavelet Toolbox

7.2.2 FWTs without the Wavelet Toolbox

7.3 Working with Wavelet Decomposition Structures

7.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox

7.3.2 Displaying Wavelet Decomposition Coefficients

7.4 The Inverse Fast Wavelet Transform

7.5 Wavelets in Image Processing

Summary

8 Image Compression

Preview

8.1 Background

8.2 Coding Redundancy

8.2.1 Huffman Codes

8.2.2 Huffman Encoding

8.2.3 Huffman Decoding

8.3 Interpixel Redundancy

8.4 Psychovisual Redundancy

8.5 JPEG Compression

8.5.1 JPEG

8.5.2 JPEG 2000

Summary

9 Moorphological Image Processing

Preview

9.1 Preliminaries

9.1.1 Some Basic Concepts from Set Theory

9.1.2 Binary Images,Sets,and Logical Operators

9.2 Dilation and Erosion

9.2.1 Dilation

9.2.2 Structuring Element Decomposition

9.2.3 The strel Function

9.2.4 Erosion

9.3 Combining Dilation and Erosion

9.3.1 Opening and Closing

9.3.2 The Hit-or-Miss Transformation

9.3.3 Using Lookup Tables

9.3.4 Function bwmorph

9.4 Labeling Connected Components

9.5 Morphological Reconstruction

9.5.1 Opening by Reconstruction

9.5.2 Filling Holes

9.5.3 Clearing Border Objects

9.6 Gray-Scale Morphology

9.6.1 Dilation and Erosion

9.6.2 Opening and Closing

9.6.3 Reconstruction

Summary

10 Image Segmentation

Preview

10.1 Point,Line,and Edge Detection

10.1.1 Point Detection

10.1.2 Line Detection

10.1.3 Edge Detection Using Function edge

10.2 Line Detection Using the Hough Transform

10.2.1 Hough Transform Peak Detection

10.2.2 Hough Transform Line Detection and Linking

10.3 Thresholding

10.3.1 Global Thresholding

10.3.2 Local Thresholding

10.4 Region-Based Segmentation

10.4.1 Basic Formulation

10.4.2 Region Growing

10.4.3 Region Splitting and Merging

10.5 Segmentation Using the Watershed Transform

10.5.1 Watershed Segmentation Using the Distance Transform

10.5.2 Watershed Segmentation Using Gradients

10.5.3 Marker-Controlled Watershed Segmentation

Summary

11 Representation and Description

Preview

11.1 Background

11.1.1 Cell Arrays and Structures

11.1.2 Some Additional MATLAB and IPT Functions Used in This Chapter

11.1.3 Some Basic Utility M-Functions

11.2 Representation

11.2.1 Chain Codes

11.2.2 Polygonal Approximations Usin Minimum-Perimeter Polygons

11.2.3 Signatures

11.2.4 Boundary Segments

11.2.5 Skeletons

11.3 Boundary Descriptors

11.3.1 Some Simple Descriptors

11.3.2 Shape Numbers

11.3.3 Fourier Descriptors

11.3.4 Statistical Moments

11.4 Regional Descriptors

11.4.1 Function regionprops

11.4.2 Texture

11.4.3 Moment Invariants

11.5 Using Principal Components for Description

Summary

12 Object Recognition

Preview

12.1 Background

12.2 Computing Distance Measures in MATLAB

12.3 Recognition Based on Decision-Theoretic Methods

12.3.1 Forming Pattern Vectors

12.3.2 Pattern Matching Using Minimum-Distance Classifiers

12.3.3 Matching by Correlation

12.3.4 Optimum Statistical Classifiers

12.3.5 Adaptive Learning Systems

12.4 Structural Recognition

12.4.1 Working with Strings in MATLAB

12.4.2String Matching

Summary

Appendix A Function Summary

Appendix B ICE and MATLAB Graphical User Interfaces

Appendix C M-Functions

Bibliography

Index