| ISBN | 出版时间 | 包装 | 开本 | 页数 | 字数 |
|---|---|---|---|---|---|
| 未知 | 暂无 | 暂无 | 未知 | 0 | 暂无 |
推荐序
译者序
前言
第1章 文本挖掘概述
1.1 文本挖掘有什么特别之处?
1.1.1 结构化或非结构化数据?
1.1.2 文本数据是否不同于数值数据?
1.2 文本挖掘可以解决什么类型的问题?
1.3 文本分类
1.4 信息检索
1.5 文档聚类与组织
1.6 信息提取
1.7 预测与评估
1.8 下章内容
1.9 小结
1.10 历史与文献评述
1.11 问题与练习
第2章 从文本信息到数值向量
2.1 文档收集
2.2 文档标准化
2.3 标记化
2.4 词形转化
2.4.1 词干变形
2.4.2 化词干为词根
2.5 预测向量生成
2.5.1 多词特征
2.5.2 正确答案的标签
2.5.3 通过属性分级选择特征
2.6 语句边界确定
2.7 词性标签化
2.8 词义消歧
2.9 短语识别
2.10 命名实体识别
2.11 语法分析
2.12 特征生成
2.13 小结
2.14 历史与文献评述
2.15 课后练习
第3章 用文本进行预测
3.1 识别文档符合模式
3.2 需要多少文档才可以满足预测需求?
3.3 文档分类
3.4 从文本中学习预测
3.4.1 相似性与最近邻法
3.4.2 文档相似性
3.4.3 决策规则
3.4.4 决策树
3.4.5 概率估计
3.4.6 线性评分方法
3.5 性能评估
3.5.1 当前与未来的性能估计
3.5.2 从学习方法中获取最大收益
3.6 应用
3.7 小结
3.8 历史与文献评述
3.9 问题与练习
第4章 信息检索和文本挖掘
第5章 文档集的结构发现
第6章 在文档中查询信息
第7章 面向预测的数据源:数据库、混杂数据与Web
第8章 实例分析
第9章 新研究方向
附录A 软件说明
参考文献
作者索引
主题索引