计算复杂性:英文本

计算复杂性:英文本
作 者: Chistos Papadimitriou
出版社: 清华大学出版社
丛编项: 大学计算机教育国外著名教材系列
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 计算复杂性
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《计算复杂性:英文本》作者简介

内容简介

计算机复杂理论的研究是计算机科学最重要的研究领域之一,而Chistos.H.Papadimitriou是该领域最著名的专家之一。本书是一本全面阐述计算机复杂性理论及其近年来进展的教科书,主要包含算法图灵机、可计算性等有关计算复杂理论的基本概念;布尔逻辑、一阶逻辑、逻辑中的不可判定性等复杂性理论的基础知识;P与NP、NP完全等各复杂性类的概念及其之间的关系等复杂性理论的核心内容;随机算法、近似算法、并行算法及其复杂性理论;以及NP之外如多项式空间等复杂性类的介绍。 本书内容丰富,体系严谨,证明简洁,叙述深入浅出,并配有大量的练习和文献引用。本书不但适合和作为研究生或本科生高年级学生的教材,也适合从事算法和计算机复杂性研究的人员参考。

图书目录

Contents

PART I: ALGORITHMS

Problems and Algorithms

1.1 Graph reachability 3

1.2 Maximum flow and matching 8

1.3 The traveling salesman problem 13

1.4 Notes, references, and problems 14

2 Turing machines

2.1 Turing machine basics 19

2.2 Turing machines as algorithms 24

2.3 Turing machines with multiple strings 26

2.4 Linear speedup 32

2.5 Space bounds 34

2.6 Random access machines 36

2.7 Nondeterministic machines 45

2.8 Notes, references, and problems 51

3 Undecidability

3.1 Universal Turing machines 57

3.2 The halting problem 58

3.3 More undecidability 60

3.4 Notes, references, and problems 66

PART II: LOGIC

4 Boolean logic

4.1 Boolean Expressions

4.2 Satisfiability and validity 76

4.3 Boolean functions and circuits 79

4.4 Notes, references, and problems 84

5 First-order logic

5.1 The syntax of first-order logic 87

5.2 Models 90

5.3 Valid expressions 95

5.4 Axioms and proofs 100

5.5 The completeness theorem 105

5.6 Consequences of the completeness theorem 110

5.7 Second-order logic 113

5.8 Notes, references, and problems 118

6 Undecidability in logic

6.1 Axioms for number theory 123

6.2 Computation as a number-theoretic concept

6.3 Undecidability and incompleteness 131

6.4 Notes, references, and problems 135

PART III: P AND NP

7 Relations between complexity classes

7.1 Complexity classes 139

7.2 The hierarchy theorem 143

7.3 The teachability method 146

7.4 Notes, references, and problems 154

8 Reductions and completeness

8.1 Reductions 159

8.2 Completeness 165

Contents

8.3 Logical characterizations 172

8.4 Notes, references, and problems 177

9 NP-complete problems

9.1 Problems in NP 181

9.2 Variants of satisfiability 183

9.3 Graph-theoretic problems 188

9.4 Sets and numbers 199

9.5 Notes, references, and problems 207

10 coNP and function problems

10.1 NP and coNP 219

10.2 Primality 222

10.3 Function problems 227

10.4 Notes, references, and problems 235

11 Randomized computation

11.1 Randomized algorithms 241

11.2 Randomized complexity classes 253

11.3 Random sources 259

11.4 Circuit complexity 267

11.5 Notes, references, and problems 272

12 Cryptography

12.1 One-way functions 279

12.2 Protocols 287

12.3 Notes, references, and problems 294

13 Approximability

13.1 Approximation algorithms 299

13.2 Approximation and complexity 309

13.3 Nonapproximability 319

13.4 Notes, references, and problems 323

On P vs. NP

14.1 The map of NP 329

14.2 Isomorphism and density 332

14.3 Oracles 339

14.4 Monotone circuits 343

14.5 Notes, references, and problems 350

PART IV: INSIDE P

15 Parallel computation

15.1 Parallel algorithms 359

15.2 Parallel models of computation 369

15.3 The class NC 375

15.4 RNC algorithms 381

15.5 Notes, references, and problems 385

16 Logarithmic space

16.1 The L -- NL problem 395

16.2 Alternation 399

16.3 Undirected reachability 401

16.4 Notes, references, and problems 405

PART V: BEYOND NP

17 The polynomial hierarchy

17.1 Optimization problems 411

17.2 The hierarchy 424

17.3 Notes, references, and problems 433

18 Computation that counts

18.1 The permanent 439

18.2 The class iBP 447

18.3 Notes, references, and problems 452

Contents

19 Polynomial space

19.1 Alternation and games 455

19.2 Games against nature and interactive protocols 469

19.3 More PSPACE-complete problems 480

19.4 Notes, references, and problems 487

20 A glimpse beyond

20.1 Exponential time 491

20.2 Notes, references, and problems 499

Index

Author index