十二人 中军差三百七十八人军差一百八十九人 后军差一百二十六人
术曰以均输求之置各军见管人騐可求约等以约之为衰副并为法以共合差数乘列衰各为寔寔如法而一各得
草曰置诸军见管求等得一千二百三十四俱以约见管前军得五右军得四中军得六左军得三后军二列为各衰副并诸衰得二十为法以共差一千得二百六十人乘诸衰前军得六千三百右军得五千四十中军得七千五百六十左军得三千七百八十后军得二千五百二十各为寔皆如法二十而一前军合差三百一十五人右军合差二百五十二人中军合差三百七十二人左军合差一百八十九人后军合差一百二十六人
数学九章卷八下
<子部,天文算法类,算书之属,数学九章>
钦定四库全书
数学九章卷九上宋 秦九韶 撰市易
积木计余
问原管杉木一尖垜偶不记数从上取用至中间见存九条为靣问原木及见存各几何
荅曰原木一百五十三条 见存木一百一十七
条
术曰商功求之堆积入之倍中靣副置减一以乘其副得数半之为原木副置上层减一以乘其副得数半之用减原木余为见存【其非中一层数者各以自地上至面层数立数求之】草曰倍中靣九条得一十八副置减一余一十七以乘副一十八得三百六条以半之得一百五十三条为原木之数副置中靣九条减一余八以乘副九得七十二以半之得三十六以减原木一百五十三余一百一十七条为见存木数合问
按此即一靣平堆形中层为九上下必各有八层共十七层即原尖堆形上八层即用过尖堆形其义甚明旧余木图今删
竹围芦束
问受给场交收竹二千三百七十四把内筀竹一千一百五十一把每把外围三十六竿水竹一千二百二十三把每把外围四十二竿芦三千六十五束每束围五尺其芦原様五尺五寸今纳到围小合凖原芦几束及水筀竹各几何
荅曰筀竹一十四万六千一百七十七竿水竹二十万六千六百八十七竿合凖原芦二千五百三十三束【一百二十一分束之七】
术曰以方田及圆率求之置原束差并竹外围竹数以乘外围又乘把数为竹实倍圆束差为竹法除之各得二竹数皆以把数为心加入各得竹条数置芦围尺数自乘以乘芦束为芦实以芦原尺数自乘为芦法除实得所凖芦束数
草曰置围束差六并筀竹外围三十六竿得四十二竿以乘外围三十六竿得一千五百一十二竿又乘筀竹一千一百五十一把得一百七十四万三百一十二竿为筀竹实倍圆束差六得一十二为竹法除实得一十四万五千二十六竿以把数一千一百五十一并之得一十四万六千一百七十七竿为筀竹又置原差六并水竹外围四十二竿得四十八竿以乘水外围四十二竿得二千一十六竿又乘水竹一千二百二十三把得二百四十六万五千五百六十八竿为水竹实亦以竹法一十二除之得二十万五千四百六十四竿以水竹把数一千二百二十三并之得二十万六千六百八十七竿为水竹数次置芦围五尺通为五十寸以自乘得二千五百寸又乘芦束数三千六十五得七百六十六万二千五百寸为芦实以原様芦围五尺五寸亦通为五十五寸以自乗得三千二十五寸为芦法除实得二千五百三十三束不尽一百七十五寸与法求等得二十五俱以约之得一百二十一分束之七为芦二千五百三十三束一百二十一分束之七合问
寄仓知总【按旧本此问无题今増】
问和籴米运借仓权顿计五十厫毎厫濶一丈五尺深三丈米高一丈二尺又借寺屋四十间内二十五间濶一丈二尺深二丈五尺米高一丈内一十五间各濶一丈三尺深三丈米高一丈二尺欲知寺屋及仓容米共计几何
答曰共计米一十六万六千八十石 仓五十厫米一十万八千石 寺屋四十间米五万八千八十石
术曰啇功求之置厫并屋深濶米高相乗并之为实如斛法而一
草曰先以厫深三丈通为三十尺乗濶十五尺得四百五十尺又乗高一十二尺得五千四百尺以乗五十厫得二十七万尺为实以斛法二尺五寸除之得一十万八千石为仓五寸厫共容米次置寺屋深二十五尺乗濶一十二尺得三百尺乗米高一十尺得三千尺以二十五间乗之得七万五千尺于上次置深三十尺乗濶一十三尺得三百九十尺又乗米高十十二尺得四千六百八十尺以乗一十五间得七万二百尺加上共得一十四万五千二百尺以斛法二尺五寸除之得五万八千八十石为寺屋四十间共容米以并厫米共得一十六万六千八十石为共和籴到米
方圆同积【按旧本此问无题今増】
问有圆囤米二十五个内有大囤一十二个上径一丈下径九尺高一丈二尺小囤一十三个上径九尺下径八尺高一丈今出租斗一只口方九寸六分底方七寸正深四寸并裹明凖尺令凖数造五斗方斛及圆斛各二只湏令二斛口径正深大小不同各得多少及囤积米几何
答曰方斛一只口方六寸四分底方一尺二寸深一尺五寸九分二厘又一只口方一尺底方一尺二寸深一尺一寸四分五厘 圆斛一只口径一尺二寸七分底径一尺二寸深一尺二寸一分四厘又一只口径一尺三寸底径一尺二寸深一尺一寸八分五厘囤米计八千六十七石四升七合四勺一抄八撮按共囤米数误应得二千零一十六石七斗六升一合八勺五抄草内少一四归故差多三倍
术曰以啇功及少广求之置出斗上下方相乗之又各自乗并
【打 印】 【来源:读书之家-dushuzhijia.com】