在禺中为己正初刻也周天三百六十度毎度为地二百五十里若相去百八十度则东方之午为西方之子相去九十度则东方之午为西方之夘矣余度俱依此推
如上图午酉子邜为日天甲乙丙丁为地
球令日轮在午而人居甲即日正在其
天顶得午时人居丙即得子时日在其
天顶冲也东去甲九十度居丁得酉时
日既过其天顶将没于地则午甲丙子为其地平也西去九十度居乙即得邜时日向其天顶方出于地亦午甲丙子为其地平也依此推筭令日轮出地平在邜人居丁得午时居乙得子时矣此何以故地为圜体故日出于邜因甲髙与乙障隔日光不照故丁之日中乙之半夜也若
地为方体者如上甲乙丙丁则日出邜
凡甲乙丁地面人宜俱得邜日入酉宜
俱得酉不应东西相去二百五十里而
差一度又七千五百里而差一时也故
明有时差者不能不信地圜也又丁乙与甲异地即异天顶即异日中而又与甲同邜酉即丁之午前短午后长矣乙之午前长午后短矣独甲得午前后平耳而今之半昼分天下皆同何也则明有半昼分者不能不信地圜也或问曰此理甚明矣然于言两地相逺一得午一得子昼夜时刻天下各异何自验之乎曰敝国诸儒多习厯象之学推验大地经纬度数皆与天应以为推筭七政测量地海之用其推验纬度稍易大抵用午正日晷或星髙及南北二极取之其推验经度稍难必于月食取之夫月食与日食异日或食或不食或食而分数多寡时刻先后随地各异月之食限分数时刻天下皆同但入限有昼夜人有见不见耳今以之推显地度毎测得一处月食甚于子即他处在其东者必食甚于丑矣在其西者必食甚于亥矣可见此一方之子时乃东方之丑时西方之亥时也若两地相去九十度则东方见食于子者西方见食于酉矣若相去百八十度则此方见食于子者彼方必于午不见食矣盖月食有定而天下之见食各异又毎去九百三十七里半而差一刻可见时刻天下各异各以日到本天顶为午正初刻也又月平行自西而东一日大约十三度强毎一时约一度五分度之一其所离列宿次舍毎时各异故西土厯家欲知两地东西相去道里之数即两地相约于同夜测月轮与某星同经度分为何时刻分如东方与此星同度分为子而西方与同度分为丑相隔一时即东西相去远七千五百里也以此推之知天下时刻各因日轮所至不可疑也即地为圜体又何疑焉
自南而北地为圜体亦可推也试如有人居广东测北极出地得二十二度北行二百五十里见北极稍髙测得二十三度次毎行二百五十里皆如之至京都测北极出地得四十度矣亦见北界星广东不见者其在广东亦见南界星京师所未见者此由地为圜球人乃循球而行故南北二极及附近诸星随而渐次隐见也若地为平体随人所至恒见天星髙于地平若干度矣
如上图西南东北为周天甲乙丙为地
之圜球丁戊己为地之方面若人在圜
球之乙即见在南诸星从乙渐向丙即
南诸星渐隐矣渐向甲者反是若人在
平面之丁即得俱见南北二极之星其在戊在巳亦如南非极诸星何由得渐次隐见乎则地为圜体亦可证也又地周三百六十度毎度二百五十里其周围实独有九万里令地为方四面其一面应得二万二千五百里人居一面地平之上其二万二千五百里之内并宜见之乃今目力所及极大畧能见三百里即于最髙山上未有能见四五百里者则地之圜体突起于中能遮两界故也不惟髙山即空际之云亦然试令两方相去四五百里其一宻云甚雨其一日色晴霁此宻云处不见日彼晴霁处不见云矣人闻雷声而不见宻云者恒有之盖雷声所极可至三百里以外故耳可得闻而雷起处必有宻云而三百里以外空际之云人遂不能见之夫向所云平地不见四五百里犹云目力有限乃空际之云物在三百里以外者遂不能见之则岂非地为圜体人所及见之面至于三百里而止乎
以此地圜故若有二国东西相去四万五千里得一百八十度半地之周居西二人约往东国一向西一向东令同时发行而以发行之第六日相遇于东国其同发时为月之朔日则向东者遇之日为月之六日向西者遇之日为月之五日此两人行同至同所更厯时刻同而一为六日一为五日何也盖东行者遡日而驰渐就于日故此人恒先得见日出地而日先得至其天顶西行者与日俱驰渐远于日故此人恒后见日出地而日后至其天顶也今大西洋估舶至小西洋嵗嵗有之若二同日解维其一东行其一西行后相遇于小西洋东行者若筭得月之六日甲子即西行者必筭得月之五日癸亥
试如后图甲乙二俱从大西洋往小西洋同以三月初一日午时解维甲望西行至申即申为其天顶乙望
东行至戍即戌为其
天顶因日轮自东而
西当先至戌后至申
戌在申东即日轮第
一周先至戌乙船以
戌为天顶是得午时
从昨开洋至此得一
日足甲船以申为天
顶日未至自戌至申
须二时则乙之午
是甲之辰扣至一
日足实少二时次乙
船至亥甲必至未
各以亥未为其天顶
日轮第二周先至亥
后至未自亥至未隔
四时则东先四时而得午正从开洋扣得二日足西更须四时乃得午为二日足也次乙至子甲必至午而子午为其天顶日轮第三周先至子后至午东在子先得午时为三日足自子至午隔六时西在午须六时乃得午为三日足次至丑至己亦如之及东至寅西宜至辰日轮自寅绕东至辰隔十时故十时之初东先得五日足而西尚须十时乃适足故甲乙二船自开洋至此际一得五日一得四日零二时既抵小西洋而夘为其天顶日轮至邜即向东者实满六日向西者实满五日是故虽同发俱至而先后差一日也此何以故地为圜体人居东先得见日轮出地平居西后见故也五日六日假説之实行者不论一年二年皆差一日其理同也或问地果圜体则上下四旁皆生人所居不知在下者安所伫其足哉曰地球之説其理甚广西庠有专书备论今独举一二端明征此理其一曰天下万物各有本所最上本所为天之上最下本所则为地之中心也其二曰物之体质有轻有重最轻玅者就最上所如火是也最重滞者就最下所如土是也其三曰物重者各有体之重心此重心者在重体之中试观于衡均重则不欹物重之重心得在其中故也其四曰既地中之心为诸重物各重心之本所物之重心悉欲就之欲就之势其下必为垂线也如人上山山之陡面不能正伫人足如伫地平与其直角造室立柱于山之陡面亦不能与为直角也何故乎人体之重心所欲就者为地之心下就之势作一地之心而垂线欲垂线立柱亦然山之斜面与地中心非相对待如地平之面故人体柱体与其峻面悉不能为直角也
如上图甲山欲立柱作直角于山之陡
面如乙必倾矣其体之重心所愿就者
为丁地心非甲山之心也虽陡面必与
地平为直角如丙乃安何故其体之重
心与丁相直耳故凡重物居地面之上各以地心为下以天为上因其重心愿就地心遂得安于地面能伫其足矣因是可知上下之分凡谓下者逺于天而就地心也谓上者就天而逺于地心也
是故地之圜球悬于空际居中无着常得安然盖四方土物皆愿降就于地心之本所东降欲就其心而遇西就者南降欲就其心而遇北就者悉悉如此相遇之际皆能相冲相逆故凝结于地之中心即不相及者以欲就故附离不脱得令大地悬居空际也
如上图丙为中心甲乙两分各为地之半球甲东降就其
心乙西降就其心其两半球又各有本
体之重心如丁如戊甲东降其本性必
欲令本体之重心丁至于丙然后止而
不可得何者乙西降亦欲其体之重心
戊至丙中心然后止也故两半球相遇于丙中心甲不令乙得西乙不令甲得东一冲一逆力势均平遂两不进亦两不能退而悬居空际安然永奠矣试于一门二人出入其一在内其一在外在外者冲欲开之在内者逆欲闭之若同冲同逆为力均平门必不动甲乙半球其理同也推至四方八面一尘一土莫不皆然隤然下凝职由于此矣第五题
表端为地心
解曰地球之大比日天只止一防【本篇三题解】况地上山岳楼台树木及所立之表何足筭乎亦与大地共为一防而已故虽人所立表表景随日轮若在地面苐以一防论之则表端之景与地心之景一也故表端不得不为地也欲征其实试作一赤道晷其法于平面作圏圏界平分三百六十度每三度四十五分【毎一度变四分】为一刻毎三十度为一时立表于圏心之即见表景平行毎刻三度四十五分【每八刻为一时】毎时三十度与日轮旋转地心度数相等设非表端为地心安能日景平行且用此平行日景作日晷数十百种一一合辙乎既明表端为地心因可随地随时立表取景以得日行周天定度也
凡立表取景必于两平面之上求得两种景其一立表平面上与地平为直角其所得景直景也如山岳楼台树木等景在平地者是
如上图甲乙为表丙乙丁为地平面戊为日轮立甲乙表任意长短与丙乙丁地平面为直角令日轮在戊为表东其光必过甲表端表端景必在表西丁则乙丁为直
景
其一倒景者横表之景也如向日有墙于其平面横立一表与地平为平行者是
如上图甲乙为墙丙丁为表戊为日轮立丙丁表于甲乙墙之平面为横表与地平平行令日轮在戊其光过表端表端景必在已而丁己为倒景
立表取景以表之度分量此二种景可得其短长以短长之度数可得日轨离地平分秒又量得一种景推筭可得别种但须先得二景之比例及表与二景相求之法乃悉其立法所由今引説数条推明指义如左
其一曰日轨出地平从一度至九十度渐升上就天顶既过一象限从九十度渐入地平下离天顶故表景因日上下而得消长日上直景消倒景长日下倒景消直景长皆至午正而复
其二曰直景与倒景之比例表与二景之比例皆在日轮出入上下度分也令立二表相等取两种景日出地平则倒景表无景其端正对日光故也而直景之表有无穷景无数可量其景与地平平行故也如上二图甲为表乙为日轨出地平于直景见甲表为无穷景与地平为平行线故不能交于地平【其故见几何原本卷之一】次见倒景之表甲正对日轨出地平之乙故无景
其三曰日轨既出地平渐向天顶而上至髙四十五度此半象分内二景一消一长直景渐消顾大于表倒景渐长顾小于表日过四十五度而上直景亦消而小于表倒景亦长而亦大于表试如上图甲为日轨在四十五度以下到丙而丙戊大于戊己表其到丁而丁戊小于戊己表也若乙为日轨在乙四十五度以上其直景到丁而丁戊小于戊己表倒景到丙而丙戊大于戊己表矣又日向天顶而上非独所立表之直景渐消而山岳楼台树木之景亦然
其四曰日轨髙四十五度为半象限即二景得相遇其长皆与表等如上甲为日轨髙四十五度即丙丁二景之表等因知二景与表皆等盖日轨在甲表景必在乙即显乙丙直景倒景皆与丙丁两表等矣诸物之景亦然故测得日髙四十五度此际量得山岳楼台树木之景度分即得物髙度分也
其五曰日轨至天顶髙九十度【缺】即直景表无景而倒景之表有无穷景试如日轨在甲天顶乙直景之表端正对于甲日轨
故无景乙表之倒景必与丙丁墙面平行故为无穷景此与第二论同义也盖如直景因与地平为平行线故不能交于地平倒景乃与墙面亦为平行线却不能交于墙面也
其六曰日出地与日髙九十度二景之理既同即一度至其间相反相对者理并同也试如日髙二度直景得长倒景得短日髙八十九度倒景得长直景得短则日髙二度之直景八十八度之倒景其长同也其短反是以至日髙三四五度二景短长与日髙八十七八十六八十五度并同也假如立二表相等各十二平分之日髙五度直景之长为表之一百三十七度即日髙八十五度倒景之长亦为表之一百三十七度日髙五度倒景之短为表之一度日髙八十五度直景之短亦为表之一度二景一消一长相反相对无有不合故用日髙度分表景短长立法布筭得一推二至为简便也
表得分十二平分
用日髙度分表景短长立筭
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
<子部,天文算法类,推步之属,表度说,表度説>
用日髙度分直景倒景短长立筭
右各图皆以直景倒景长短立筭而得日髙度分最上最下各横书一行日髙之度也上行顺筭自一度至九十度用之因直景度分而得日髙之度下行逆筭自九十度起筭至一度用之因倒景度分
【打 印】 【来源:读书之家-dushuzhijia.com】