模式识别与神经网络(英文版)

模式识别与神经网络(英文版)
作 者: 里普利
出版社: 人民邮电出版社
丛编项: 图灵原版计算机科学系列
版权说明: 本书为出版图书,暂不支持在线阅读,请支持正版图书
标 签: 运筹学
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

  里普利(B.D.Ripley)著名的统计学家,牛津大学应用统计教授。他在空间统计学、模式识别领域作出了重要贡献,对S的开发以及S-PLUSUS和R的推广应用有着重要影响。20世纪90年代他出版了人工神经网络方面的著作,影响很大,引导统计学者开始关注机器学习和数据挖掘。除本书外,他还著有Modern Applied Statistics with S和S Programming。

内容简介

《模式识别与神经网络(英文版)》是模式识别和神经网络方面的名著,讲述了模式识别所涉及的统计方法、神经网络和机器学习等分支。书的内容从介绍和例子开始,主要涵盖统计决策理论、线性判别分析、弹性判别分析、前馈神经网络、非参数方法、树结构分类、信念网、无监管方法、探寻优良的模式特性等方面的内容。《模式识别与神经网络(英文版)》可作为统计与理工科研究生课程的教材,对模式识别和神经网络领域的研究人员也是极有价值的参考书。

图书目录

1 Introduction and Examples1

1.1 How do neural methods differ?4

1.2 The patterm recognition task5

1.3 Overview of the remaining chapters9

1.4 Examples10

1.5 Literature15

2 Statistical Decision Theory17

2.1 Bayes rules for known distributions18

2.2 Parametric models26

2.3 Logistic discrimination43

2.4 Predictive classification45

2.5Alternative estimation procedures55

2.6 How complex a model do we need?59

2.7 Performance assessment66

2.8 Computational learning approaches77

3 Linear DiscriminantAnalysis91

3.1 Classical linear discriminatio92

3.2 Linear discriminants via regression101

3.3 Robustness105

3.4 Shrinkage methods106

3.5 Logistic discrimination109

3.6 Linear separatio andperceptrons116

4 Flexible Diseriminants121

4.1 Fitting smooth parametric functions122

4.2 Radial basis functions131

4.3 Regularization136

5 Feed-forward Neural Networks143

5.1 Biological motivation145

5.2 Theory147

5.3 Learning algorithms148

5.4 Examples160

5.5 Bayesian perspectives163

5.6 Network complexity168

5.7Approximation results173

6 Non-parametric Methods181

6.1 Non-parametric estlmation of class densities181

6.2 Nearest neighbour methods191

6 3 Learning vector quantization201

6.4 Mixture representations207

7 Tree-structured Classifiers213

7.1 Splitting rules216

7.2 Pruning rules221

7.3 Missing values231

7.4 Earlier approaches235

7.5 Refinements237

7.6 Relationships to neural networks240

7.7 Bayesian trees241

8 Belief Networks243

8.1 Graphical models and networks246

8.2 Causal networks262

8 3 Learning the network structure275

8.4 Boltzmann machines279

8.5 Hierarchical mixtures of experts283

9 Unsupervised Methods287

9.1 Projection methods288

9.2 Multidimensional scaling305

9.3 Clustering algorithms311

9.4 Self-organizing maps322

10 Finding Good Pattern Features327

10.1 Bounds for the Bayes error328

10.2 Normal class distributions329

10.3 Branch-and-bound techniques330

10.4 Feature extraction331

A Statistical Sidelines333

A.1 Maximum likelihood and MAP estimation333

A.2 TheEMalgorithm334

A.3 Markov chain Monte Carlo337

A.4Axioms for dconditional indcpcndence339

A.5 Oprimization342

Glossary347

References355

Author Index391

Subject Index399