拉马努金遗失笔记(第四卷)

拉马努金遗失笔记(第四卷)
作 者: 乔治 安德鲁斯 布鲁斯 伯恩特
出版社: 哈尔滨工业大学出版社
丛编项:
版权说明: 本书为公共版权或经版权方授权,请支持正版图书
标 签: 暂缺
ISBN 出版时间 包装 开本 页数 字数
未知 暂无 暂无 未知 0 暂无

作者简介

暂缺《拉马努金遗失笔记(第四卷)》作者简介

内容简介

暂缺《拉马努金遗失笔记(第四卷)》简介

图书目录

Introduction

1 The Rogers-Ramanujan Continued Fraction

and Its Modular Properties

1.1 Introduction

1.2 Two-Variable Generalizations of (1.1.10) and(1. 1.11) 13

1.3 Hybrids of(11.10)and(1.1.11)

1.4 Factorizations of(1.1.10) and(1. 1.11)

1.5 Modular equations

1.6 Theta-Function Identities of Degree 5

1.7 Refinements of the Previous Identities

1.8 Identities Involving the Parameter k=R(q)R(q2)

1.9 Other Representations of Theta Functions Involving R(q)..39

1.10 Explicit Formulas Arising from(1.1.11)….……,44

2 Explicit Evaluations of the Rogers-Ramanujan Continued

Fraction

2.1 Introduction

2.2 Explicit Evaluations Using Eta-Function Identities

2.3 General Formulas for Evaluating R(e-2mVn) and S(e-TVn).66

2.4 Page 210 of Ramanujan's Lost Notebook

2.5 Some Theta-Function Identities

2.6 Ramanujans General Explicit Formulas for the

Rogers-Ramanujan Continued Fraction 79

3 A Fragment on the Rogers-Ramanujan and Cubic

Continued fractions

3.1 Introduction

3.23 The RogersTheory-RamanujofanujaContinuedsCubicFractionContinued Fraction,...86

3.4 Explicit Evaluations of G(a)

4 Rogers-Ramanujan Continued Fraction- Partitions,

Lambert series

4.1 Introduction.....,,,,.,...........

4.2 Connections with Partitions

4.3 Further Identities Involving the Power Series Coefficients of

C(q)and1/C(q)……

4.4 Generalized Lambert Series

4.5 Further g-Series Representations for C(a)

5 Finite Rogers-Ramanujan Continued Fractions...... 125 5.1 Introduction......... 5.2 Finite Rogers-Ramanujan Continued Fractions...... 126

53 A generalization of Entry5.2.1..………∵

5.4 Class invariant

5.5 A Finite Generalized Rogers-Ramanujan Continued Fraction 140

6 Other q-continued fractions

6.1 Introduction

6.2 The Main Theore 6.3 A Second General Continued Fraction 6.4 A Third General Continued Fraction........... 159 6.5 A Transformation Formula 6.6 Zeros................ ,165

6.7 Two Entries on Page 200 of Ramanujan's Lost Notebook.. 169

6.8 An Elementary Continued Fraction

7 Asymptotic Formulas for Continued Fractions

7.1 Introduction

7.2 The Main Theorem

7.3 Two Asymptotic Formulas Found on Page 45 of

Ramanujans Lost Notebook

7.4 An Asymptotic Formula for R(a, q)

8 Ramanujan,s Continued Fraction for(q

8.1 Introduction

8.2 A Proof of Ramanujan's Formula(8.1.2)

3 The Special Case a= w of(8.1.2) 8.4 Two Continued Fractions Related to(q; q)oo/(q; oo... 213

8.5 An Asymptotic Expansion

9 The Rogers-Fine Identity

1 Introduction........ 9.2 Series Transformations 9.3 The Series nan(n 1)/2 n=09n(3n 1)/2 9. 4 The Series 9.5 The Series n=o gun 2n

10 An Empirical Study of the Rogers-Ramanujan Identities. 241

10.1 Introduction.......,,,,,∴,.241

10.2 The First Argument

10.3 The Second Argument

10.4 The Third Argument

10.5 The Fourth Argument

11 Rogers-Ramanujan-Slater-Type Identities ........ 251 11.1 Introduction. 11.2 Identities Associated with Modulus 5.,.................. 252 11.3 Identities Associated with the Moduli 3. 6. and 12......... 253 11.4 Identities Associated with the Modulu...

13.5 a Formal Power Series..,,,,,,,,,,,,,,,...,291

136 The Zeros of K。(2x)

13.7 Small Zeros of Koo(z)

13.8 A New Polynomial Sequence

13.9 The Zeros of pn(a)

13.10 A Theta Function Expansion

13.11 Ramanujan's Product for poo(a)